皮肤癌是一种严重且可能危及生命的疾病,影响着全球数百万人。早期发现和准确诊断对于成功治疗和改善患者预后至关重要。近年来,深度学习已成为医学图像分析的有力工具,包括皮肤癌的诊断。使用深度学习诊断皮肤癌的重要性在于它能够快速准确地分析大量数据。这可以帮助医生就患者护理做出更明智的决定并改善整体结果。此外,可以训练深度学习模型来识别人眼可能无法看到的细微模式和特征,从而实现更早的发现和更有效的治疗。本研究使用预先训练的视觉几何组 16 (VGG16) 架构对皮肤癌图像进行分类,并将图像转换为其他色阶,称为:1) 色相饱和度值 (HSV)、2) YCbCr、3) 灰度以供评估。结果表明,在现场条件下使用 RGB 和 YCbCr 图像创建的数据集很有前景,分类准确率为 84.242%。还用其他流行的架构对数据集进行了评估和比较。分析了 VGG16 对每个色阶图像的性能。此外,还从不同的层中提取了特征参数。用 VGG16 感受提取的层,以评估特征参数对疾病进行分类的能力。
利用在DX Tokyo生产中使用的优化技术(2025年3月13日) - 柯尼卡·米托尔塔(Konica Minolta,Inc。)(柯尼卡·梅尔塔(Konica Minolta)(柯尼卡·梅尔塔(Konica Minolta))宣布,其数据科学家赢得了圣诞老人2024年获得第13奖,这是全球最大的AI竞争平台,与其他金色的Medal一起获得的困惑置换拼图 - 由世界上最大的AI竞争平台和其他奖项赢得。在Kaggle竞争中,许多世界领先的数据科学家和机器学习工程师都在争夺他们的技能。成为这项享有声望的竞争的获奖者之一,提高了国际对数据科学和AI工程技术的设计和技术能力的认识。柯尼卡美能达(Konica Minolta)的数据科学家和电通信大学的成员,包括Kei Harada教授(信息学系)组成了一个联合团队,参加比赛并获得了金牌。金牌得主柯尼卡美能省公司(Konica Minolta,Inc。Kaggle是全球数据科学家可以从事相同任务并分享各种方法的少数平台之一,使其成为非常有用的学习空间。“我将利用我的工作中竞争中获得的知识,并将继续加深我的知识,以赢得更高的Kaggle Master标题。”竞争的概述和结果竞争的任务称为“圣诞老人2024-困惑置换拼图”,是重新排列文本,最多包含100个英语单词,以创建大型语言模型(LLM)的最自然文本。这需要有效地从大量单词组合中搜索解决方案,这使竞争极为困难。
信用卡欺诈和Kaggle欺诈性信用卡交易数据集恶意软件和恶意事件机器学习框架用于信用卡欺诈检测和恶意的事件检测功能缩放,使用可靠的Scaleer合成少数民族过度采样技术(SMIMOTE)来减轻数据不平衡决策树•第8周:在线学习广告范围,并在线学习广告范围,并进行在线广告封锁,程序bilary Blociary Blassing,以及
摘要:对医学的贡献可能来自不同的领域,其中大多数领域都充满了渴望贡献的研究人员。在本文中,我们的目标是通过机器学习与网络开发的交集做出贡献。我们使用基于JavaScript的库Tensorflow.js,使用从Kaggle获得的神经网络对生物医学数据集进行建模。本研究的主要目的是介绍TensorFlow.js的功能,并在开发为基于Web的应用程序定制的复杂机器学习模型的开发中促进其实用性。我们对三个数据集进行了建模:糖尿病检测,手术并发症和心力衰竭。虽然Python和R当前占主导地位,但JavaScript及其衍生物迅速增长,提供了可比的性能和与JavaScript相关的其他功能。Kaggle是我们下载数据集的公共平台,提供了广泛的生物医学数据集集合。因此,读者可以通过对所兴趣的任何情况进行较小的调整,轻松地测试我们讨论的方法。结果表明,糖尿病检测的准确性为92%,手术并发症几乎为100%,心力衰竭的精度为80%。可能性很大,我们认为这是专注于Web应用程序的研究人员,尤其是在医学领域的绝佳选择。关键字:生物信息学 - 张力流 - JavaScript - 糖尿病 - 药物 - 机器学习 - Angular
3-4 人小组的学生将阅读研究论文,其中利用索引构建、查询处理、容错检索、向量空间建模、概率信息检索、链接分析等信息检索方法来解决研究相关问题。学生将使用从 Kaggle、Github、UCI、KDD 等平台获取的标准数据集来实现研究论文。将这些方法应用于标准数据集将使学生能够增强对信息检索的理解和技能。
摘要:简介:医学领域的贡献可能来自不同领域;大多数领域都充满了想要提供支持的研究人员。方法:我们使用 TensorFlow.js 对来自 Kaggle 的神经网络生物医学数据集进行建模。我们建模了三个数据集:糖尿病检测、手术并发症和心力衰竭。我们使用 TypeScript 编写的 Angular 来实现模型。使用 TensorFlow.js,我们构建了多层感知器 (MPL) 来建模我们的数据集。结果与讨论:我们使用 TensorFlow.js 作为机器学习平台构建了几个示例。尽管 Python 和 R 目前占主导地位,但 JavaScript 及其衍生产品正在快速发展,提供基本相同的性能以及与 JavaScript 相关的一些额外功能。 Kaggle 是我们下载数据集的公共平台,它提供了大量生物医学案例数据集,因此,读者可以使用相同的代码,以很小的改动,轻松测试我们讨论的内容,用于他们可能感兴趣的任何案例。我们发现糖尿病检测准确率为 92%,手术并发症准确率为 100%,心力衰竭准确率为 70%。可能性是无限的,我们相信对于以网络应用为目标的研究人员来说,这是一个不错的选择,尤其是专注于医学的研究人员。关键词:生物信息学 — TensorFlow — JavaScript — 糖尿病 — 医学 — 机器学习 — Angular
摘要:脑肿瘤是细胞发育不正常的结果。它是全球成年人死亡的主要原因。早期发现脑肿瘤可以避免许多死亡。用于早期脑肿瘤诊断的磁共振成像(MRI)可以提高患者的生存机会。诊断脑肿瘤的最常用方法是 MRI。MRI 中恶性肿瘤的可见性提高使治疗更容易。脑癌的诊断和治疗取决于其识别和治疗。过去十年中提出了许多深度学习模型,包括 Alexnet、VGG、Inception、ResNet、DenseNet 等。所有这些模型都是在庞大的数据集 ImageNet 上训练的。这些通用模型具有许多参数,在针对特定问题实施这些模型时,这些参数变得无关紧要。本研究使用自定义深度学习模型对脑部 MRI 进行分类。提出的疾病和空间注意力模型(DaSAM)有两个模块; (a) 疾病注意模块 (DAM),用于区分图像的疾病区域和非疾病区域;(b) 空间注意模块 (SAM),用于提取重要特征。所提出的模型的实验在两个公开的多类数据集 Figshare 和 Kaggle 数据集上进行,分别达到了 99% 和 96% 的准确率。所提出的模型还使用跨数据集验证进行了测试,在 Figshare 数据集上训练并在 Kaggle 数据集上验证时达到了 85% 的准确率。DAM 和 SAM 模块的结合实现了特征映射功能,这对于在模型的决策过程中突出显示重要特征非常有用。
地址:Algiers,Algeria电子邮件:rhalimouche@hotmail.fr摘要糖尿病性视网膜病(DR)会影响全球数百万人,提出了严重的眼部状况,需要及时检测和诊断以防止视力障碍并改善患者护理。随着人工智能(AI)的兴起,医学领域已经获得了早期疾病检测的强大工具。 这项研究探讨了AI在早期诊断DR的作用,评估了两个预训练的卷积神经网络(CNN) - VGG16和EfficityNetB0的性能。 这些模型使用传输学习技术进行了微调和调整,以对DR和非DR图像进行分类。 使用来自Kaggle的两个不同数据集,一个包含RGB图像和另一个高斯过滤图像进行评估。 结果表明,在微调后,VGG16的精度为95.21%,而随着人工智能(AI)的兴起,医学领域已经获得了早期疾病检测的强大工具。这项研究探讨了AI在早期诊断DR的作用,评估了两个预训练的卷积神经网络(CNN) - VGG16和EfficityNetB0的性能。这些模型使用传输学习技术进行了微调和调整,以对DR和非DR图像进行分类。使用来自Kaggle的两个不同数据集,一个包含RGB图像和另一个高斯过滤图像进行评估。结果表明,在微调后,VGG16的精度为95.21%,而
在预测糖尿病的数据挖掘的实施研究中,研究人员使用了源自Kaggle的数据库,多达768个数据,其中有9个糖尿病指标。本研究使用2种方法,即随机森林和XGBoost来分析糖尿病的预测。这项研究经历了预处理的几个阶段,以处理初始数据,然后再通过随机森林和XGBoost之间的两个建模主题进行测试,使用交叉验证5测试以确定最佳参数。使用精度,精度,召回和F1得分的矩阵评估。