合作伙伴关系。最后,数字未来计划支持技术合作伙伴关系,帮助解决澳大利亚在可持续发展和健康等一系列领域面临的一些最严峻的挑战。作为其中的一部分,谷歌正在与澳大利亚联邦科学与工业研究组织 (CSIRO) 和 Kaggle 在线数据科学社区合作,帮助保护大堡礁。41 作为此次合作的一部分,开发了一种人工智能模型,帮助环保人士识别和绘制棘冠海星爆发的地图,棘冠海星是大堡礁的主要威胁。除了海洋保护外,谷歌还与 CSIRO 合作解决其他关键问题,例如能源和自然灾害管理。
mlnova是按照结构化的,以用户为中心的设计方法开发的,从用户研究开始,以查明Kaggle和Udemy等现有平台中的差距。平台开发中的关键标准包括可访问性,实时反馈和易用性,这导致选择了Django以进行后端稳定性和React.js。该平台使用MongoDB和Firebase进行有效的数据处理,从而确保学习者操纵数据集的交互式模块中的实时更新。使用Scikit-Learn实施了机器学习模型,以实现简单性,而Plotly和D3.js促进了高质量的数据可视化。这种技术组合为用户提供了引人入胜的互动体验。
摘要 - 移动电话的价格是市场上移动产品成功的最重要因素之一。根据其功能预测手机价格的回归方法可以帮助公司确定新手机的价格。这项研究研究了可显着预测价格并开发模型以使用两种方法预测价格的变量,即线性回归和随机森林方法。该实验使用的数据从Kaggle下载,其中包含145个手机价格和功能。发现,线性回归和随机森林算法可以提供相对良好的手机预测,其MAPE评分低于10%和R2得分以上95%以上。随机森林方法预测价格略好于线性回归。
摘要:确保主动检测交易风险对于金融机构来说至关重要,尤其是在管理信用评分的情况下。在这项研究中,我们将不同的机器学习算法有效,有效地比较。The algorithms used in this study were: MLogisticRegressionCV, ExtraTreeClassifier,LGBMClassifier,AdaBoostClassifier, GradientBoostingClassifier,Perceptron,RandomForestClassifier,KNeighborsClassifier,BaggingClassifier, DecisionTreeClassifier, CalibratedClassifierCV, LabelPropagation, Deep 学习。数据集是从Kaggle存放处收集的。它由164行和8列组成。与不平衡数据集的最佳分类器是LogisticRegressionCV。精度为100.0%,进动100.0%,召回100.0%和F1得分100.0%。但是,使用平衡数据集的最佳分类器是LogisticRegressionCV。精度为100.0%,进动100.0%,召回100.0%和F1得分100.0%。
在本文中,使用了预先训练的FastAI CNN模型的RESNET152体系结构。RESNET152体系结构被视为基本模型,并通过修改后3层进行改进。密集的层,然后使用新层改善了软磁层和二进制跨膜片层。在此之后,改进了RESNET152深度学习模型,对从Kaggle和Brats2015收集的2个不同的脑数据集进行了培训。进行模型的微调。在DataSet-253和DataSet-205上进行验证时,改进模型的精度分别为97%和96%。与其他深度学习模型相比,改进的模型使用2个不同的大脑MRI数据集可获得最佳结果。图中给出了精度百分比比较。15下面。应用于增加MR
脑肿瘤是一种日益严重的全球流行病,每年夺走数百万人的生命。误诊会导致不必要的治疗并缩短预期寿命。医生已经使用基于计算机的诊断技术(例如 DenseNet201 和 Gabor 滤波器)做出准确诊断。在这项工作中,SVM 用于对独立特征进行分类,并使用 DenseNet201 算法和 Gabor 滤波器从 MRI 图像数据集中收集基本特征。在从目标区域提取独特特征方面,深度卷积层优于标准技术。使用来自 Kaggle 网站的 7023 张脑肿瘤图片的 MRI 数据集,使用 SVM 对特征进行分类。DenseNet201 和 Gabor 滤波器的混合方法产生了最佳的整体结果,精度为 98.02%,准确率为 98.01%,F1 得分为 98.01%。
提供了在性别研究中进行定量分析的工具,包括计算各种性别不平等指标的功能,例如性别薪酬差距,性别不平等指数(GII),Gen-der发展指数(GDI)(GDI)和性别赋予性赋权措施(GEM)。还包括用于实践和学习目的的辅助次级示例数据集,这些数据集是从开发计划署人类发展报告中心和作者世界银行一般数据门户中概述的,该数据集可在上获得。参考:米勒,凯文;阴道,Deborah J.(2021)。Jacques Charmes&Saskia Wieringa(2003)。GaëlleFer-Ferrant(2010)。GaëlleFer-Ferrant(2010)。
背景:糖尿病是影响世界许多人的主要健康问题。目标:为了解决此问题,我们使用来自流行数据共享网站Kaggle的数据。方法:我们使用称为随机森林算法的计算机智能根据年龄,糖尿病水平和其他因素来测试糖尿病。统计分析:我们的随机森林模型已被证明非常有效地考虑数据中的复杂模式,从而帮助我们准确预测一个人是否患有糖尿病。发现:我们的方法脱颖而出,因为我们专注于事实准确性,这使其与其他方法不同。应用和改进:这项研究是计算机在医疗保健中日益增长使用的一部分,表明随机森林工具可能是诊断早期糖尿病的可靠且简便的方法。
摘要 - 在许多国家中,中风是内瘤和死亡的主要原因。这项研究的目标是弄清楚如何使事情变得更好。我使用了来自Kaggle的中风疾病数据集。患者可以从已预处理的数据中受益。缺血性中风和中风出血是两种中风形式,使用机器学习方法将个体分为两类。在此调查中采用了七次机器学习技术。逻辑回归,支持向量机(SVM),随机森林,猫的增长,多层感知器(MLP),天真的贝叶斯,K-最近的邻居,因此,我们的发现,Cat Boost可以使最佳准确性以及精确和召回值以及F1评分。关键字 - 准确性,数据预处理,机器学习,预测,中风
除了大型科技公司外,其他公司都缺少数据科学家。借助 H2O Driverless AI,专家和新手数据科学家都可以快速自动构建高度透明的精确模型。H2O Driverless AI 是一款屡获殊荣的 AutoML 产品,它嵌入了来自世界顶尖工程和数据科学专家(包括世界顶级 Kaggle 大师)的数据科学最佳实践。它使用独特的遗传算法来确定每个用例的特征、模型和调整参数的最佳组合。集成的最佳实践和护栏可确保模型不会过度拟合数据,并帮助解决新手数据科学家可能需要帮助的其他常见问题。H2O Driverless AI 使公司能够利用他们已有或可以轻松找到的人才开展更多用例。