摘要:由于世界各地的高死亡率,心脏病已经成为许多人的严重健康问题。常规的临床数据分析在心脏病的早期诊断方面有很大的困难。心脏病的鉴定可能会受益于机器学习的使用。为了改善机器学习模型,以前已经进行了几项研究。建议的研究使用分类的最大投票集合技术有效地识别心脏病。建议的分类器是一种更可靠和准确的方法。以识别和消除异常值,进行四分位数范围外离群值的去除和在预处理过程中的最低最大标准化。准确性,精度,召回和F1得分是针对各种模型进行计算和评估的。对于从Kaggle收集的心脏病数据集,建议的最大投票集合分类器的精度为99.22%。关键字:心脏病,最大投票,合奏,离群拆除,XGBoost,决策树,KNN,SVM,梯度增强
认识到交通标志是自动驾驶汽车的至关重要的任务,以提高道路安全性。在这项研究中,我们建议一本小说您只能看一次版本8(Yolov8)模型来识别交通标志。该模型已在Kaggle数据集上进行了培训,该数据集包含不同环境下的多个流量标志。Yolov8模型的准确性为80.64%,测试数据的召回率为65.67%。这些指标强调了该模型识别流量标志的能力。值得注意的是,Yolov8对早期版本进行了一些显着改进,例如在困难情况下增强的检测和增强的小规模标志识别。本文还探讨了整个模型训练阶段产生的困难,并提供了可行的解决方案,这些解决方案用于克服这些困难,从而提高了模型的性能。令人鼓舞的结果表明,实施基于YOLOV8的策略在实际交通管理系统中的生存能力,这是建立更复杂和可靠的交通信号识别技术的积极进步。
管理:将 AI 引入 MBA 课程应从对该领域的全面概述开始 - 其历史、发展和现状。这些基础知识奠定了后续的基础:对机器人、自然语言处理、语音识别和机器学习等 AI 系统的更复杂探索。学生必须了解 AI 的广度和深度,认识到其优化流程的潜力及其对未来工作的影响。通过案例研究,学生可以学会使用 AI 驱动的洞察力做出明智的决策。教授 AI 如何帮助人才获取、员工保留、绩效评估和劳动力规划可以成为 MBA 课程的重要组成部分。不要忽视向 MBA 学生教授基本 Python 数据分析的机会,这不仅可以培养 AI 素养,还可以让他们充分利用这种编程语言的潜力。这样,学生也会意识到这些系统背后的复杂性,这可能会在考虑使用它们时有所帮助。像 Kaggle 这样的平台可以帮助找到可管理的数据集,以进行基本的数据分析和可视化。
EN.705.601。应用机器学习。3 个学分。机器学习 (ML) 是使用计算机解决计算问题的艺术,无需明确的程序。ML 现在如此普遍,以至于各种 ML 应用程序(例如图像识别、股票交易、电子邮件垃圾邮件检测、产品推荐、医疗诊断、预测性维护、网络安全等)我们周围的组织不断使用它,有时我们甚至没有意识到。在本课程中,我们将严格将机器学习技术应用于现实世界的数据,以解决现实世界的问题。我们将简要研究各种机器学习方法的基本原理,例如异常检测、集成学习、使用神经网络的深度学习等。主要重点是将基于 Python 的 Anaconda 和基于 Java 的 Weka 数据科学平台的工具库应用于来自在线资源(例如 Kaggle、UCI KDD、开源存储库等)的数据集。我们还将使用 Jupyter 笔记本来展示和演示几个机器学习管道。先决条件:EN.705.621 算法简介或 EN.605.621 算法基础或 EN.685.621 数据科学算法
本研究对使用机器学习算法(MLAS)从2020年到2023年进行了系统文献综述(SLR)。批判性地检查了从传统统计模型到评估信用风险的高级ML技术的过渡,重点是银行业对可靠的默认预测方法的需求。评论强调了随机森林算法在各种研究中对复杂数据集的出色处理和预测准确性的优势。此外,它将Kaggle确定为研究数据集的关键来源,强调了可访问和全面数据在开发有效的预测模型中的重要性。本文还概述了未来的研究方向,强调了大数据分析的整合,复杂的合奏方法的应用以及深度学习技术的潜力。承认某些局限性,例如研究的时间重点和数据库选择标准,它要求持续的研究以探索新兴趋势和方法论。该发现旨在指导研究人员和从业人员增强贷款默认预测模型,从而有助于更有效的信用风险管理策略。
本研究旨在对现有(最先进的)深度学习模型进行比较分析,以利用 MRI(磁共振成像)图像识别脑肿瘤疾病的早期检测。为此,在 Matlab 平台上编码了 GoogleNet、Mobilenetv2、InceptionV3 和 Efficientnet-b0 深度学习模型,并用于检测和分类脑肿瘤疾病。对常见的胶质瘤、脑膜瘤和垂体脑瘤进行了分类。数据集包括四个不同类别的 7022 张脑 MRI 图像,这些图像在 Kaggle 平台上公开共享。对数据集进行了预处理,对模型进行了微调,并使用了适当的参数值。在评估我们比较的深度学习模型的统计分析结果时,按成功率排序,获得了 Efficientnet-b0(%99.54)、InceptionV3(%99.47)、Mobilenetv2(%98.93)和 GoogleNet(%98.25)的结果。研究结果有望为相关领域的医生和研究人员的决策提供建议,特别是在疾病的早期诊断、缩短诊断时间和减少人为错误方面具有一定优势。
第 35 页 代表委托机构或公司的导师 本论文探讨了当前在供应链管理中使用人工智能的方法。本论文的目的是通过回顾 SCM 中当前的 AI 应用方法并进行实践实验,确定当前的 AI 利用水平并发现差距和挑战。最终目标是回答以下研究问题:AI 在供应链管理中的当前应用是什么?以及在供应链管理中使用 AI 的当前挑战是什么? 研究方法包括系统的文献综述和使用 AI 评估供应链的实践实验。审查中包括来自 ScienceDirect 数据库的十份出版物,并使用 Kaggle 平台进行了两项实践实验。主要结果是回顾了人工智能在供应链管理中的应用并讨论了结果。除了回顾出版物外,还提供了人工智能和供应链管理的背景。总之,人们对将 AI 应用于供应链预测、网络、评估和融资的兴趣日益浓厚。
摘要:心脏病是一种死亡率高的疾病,全世界都有超过1200万人死亡。心脏病的诊断非常具有挑战性。经常遇到的问题是分类过程中缺乏准确性。因此,需要系统来对心脏病进行早期诊断。这项研究的结构是从Kaggle获取心脏病数据集。然后,将通过预处理清洁数据。进行的预处理过程是更改表名称,检查缺失值并归一化。820数据将使用支持向量机进行培训,并将测试205个数据,以了解模型可以执行分类的程度。总共1025个数据的培训和测试结果将形成分类模型。使用支持向量机形成的模型获得了88的混淆矩阵结果,是真实的正数据,93是真正的负数据,10是假阳性数据,而14个是假阴性数据。因此,模型训练的结果的准确度为88%。关键字:支持向量机,心脏病,分类
摘要。近年来,自然语言处理领域(NLP)发生了一场革命,文字一代在这一转变中起着关键作用。这种转变不仅限于技术领域,而且还无缝渗透了创意领域,一个很好的例子是歌曲歌词的一代。真正有效的生成模型,例如生成训练的预训练变压器(GPT)-2,需要进行微调作为关键步骤。本文利用了广泛参考的Kaggle数据集的鲁棒性,标题为“歌曲歌词”,仔细探讨了调节三个关键参数的影响:学习率,批处理大小和序列长度。数据集提出了一个引人入胜的叙述,该叙述将学习率视为最有影响力的决定因素,直接影响了产生的歌词的质量和连贯性。在增加批处理大小和扩展序列长度有望增强模型性能的同时,很明显,还有一个饱和点,超出该点的效果受到限制。通过此探索,本文旨在揭开模型校准的复杂世界,并强调战略参数选择在追求抒情卓越方面的重要性。
摘要摘要中风是一种以脑内血管破裂为特征的疾病,可导致脑损伤。当大脑的血液和必需营养素供应中断时,可能会出现各种症状。本研究的主要目标是使用机器学习和深度学习来预测早期发生脑中风的可能性。及时发现中风的各种警告信号可以显著降低中风的严重程度。本文对特征进行了全面的分析,以提高中风预测的有效性。从 Kaggle 网站上获取了一个可靠的中风预测数据集,以衡量所提算法的有效性。该数据集存在类别不平衡问题,这意味着负样本总数高于正样本总数。结果基于使用过采样技术创建的平衡数据集报告。这项提案的工作使用 Smote 和 Adasyn 来处理不平衡问题,以获得更好的评估指标。此外,与原始不平衡数据集和其他基准测试算法相比,使用 Adasyn 过采样利用平衡数据集的混合神经网络和随机森林 (NN-RF) 实现了 75% 的最高 F1 分数。