对乐队结构工程的不懈追求仍然是固态研究中的一个基本方面。在这里,我们精心构建了人工kagome的潜力,以生成和控制石墨烯的多个狄拉克带。这种独特的高阶潜在具有自然的多种组件,从而通过不同的潜在贡献来重建带结构。结果,每个以不同的分散体为特征的频带成分,响应人造电势的变化而在不同速度下的能量变化。因此,我们观察到多个狄拉克峰的光谱重量重新分布。此外,磁场可以有效地削弱超晶格效应并重新激活内在的狄拉克带。总的来说,我们实现了分散选择性带工程的积极性,该功能将大大提高频段设计的自由度。
抽象的kagome金属显示出由于几何挫败感,扁平带,多体效应和非平凡拓扑而引起的竞争量子阶段。最近,在FEGE的抗铁磁阶段深处发现了一种新型的电荷密度波(CDW),这引起了由于与磁性密切的关系而引起的强烈关注。在这里,通过扫描隧道显微镜(STM),我们发现FeGE中的2×2 CDW非常脆弱,并且很容易被破坏到最初的1×1相中。发现小√3×√3CDW水坑与在生长样品中的2×2 CDW并存,并且也可以在CDW中断的中间过程中诱导,最终将转变为最初的1×1相。此外,在中断过程中,异国情调的中间CDW状态和独立的CDW核出现了。我们的第一原则计算在CDW波矢量周围的大动量区域中发现平面光学声子模式的平等软化,对应于具有近距离能量的众多竞争CDW。这可能导致CDW基态的强烈不稳定,负责STM观测。我们的发现提供了更多新颖的实验方面,以了解FEGE中的CDW,并建议类似Fege的Kagome金属是研究竞争CDW不稳定性物理学的理想平台。
理解非常规的超导性是凝结物理学的关键重点,因为电子配对背后的机制仍未解决。材料的晶体结构显着影响其电子和超导特性。最近,由于其具有非常规超导地面状态的潜力[1-4],因此沮丧的结构(例如Kagome Lattices)引起了很大的关注。kagome晶格材料表现出各种奇特的电子特征,包括平面带,狄拉克锥和非平凡的拓扑表面状态,这些表面既可以预测[5,6]和观察到[7,8]。正如最近发现的AV 3 SB 5化合物(其中A = K,CS,RB)[1,9,9,10]和Metallic“ 132” rt 3 x 2 parres there there there there there there there there rt 3 x 2 prarge the, kagome系统中平坦带的电子相关性和固有特性在超导性的出现中起着至关重要的作用。金属和X是B,GA或SI)[11-13]。 值得注意的是,在AV 3 SB 5系统中,超导性伴随着翻译,旋转和时间逆转对称性的破坏[8,14]。kagome系统中平坦带的电子相关性和固有特性在超导性的出现中起着至关重要的作用。金属和X是B,GA或SI)[11-13]。值得注意的是,在AV 3 SB 5系统中,超导性伴随着翻译,旋转和时间逆转对称性的破坏[8,14]。
我们研究了霍尔斯坦扩展哈伯德模型的电子电子和电子 - phonon介导的配对,并在范霍夫填充物附近的kagome晶格上进行,我们研究了它们对电子配对状态的综合作用。我们发现,它们的组合可以在跨界区域促进异国情调的配对,在该区域中,填充物接近Van Hove的奇异性。尤其是在P型Van Hove填充时,E 1 U(P -Wave)和B 2 U(F Y 3 - 3 - 3 - 3 YX 2 -Wave)配对变得领先,在M -type van Hove flling,E 1 U和A 2 g(I -Wave)配对中得到了促进。此外,我们表明,由于费米表面的sublattice质地,电子 - 光子相互作用获得了显着的动量依赖性,从而可以促进非S波配对。我们对这些配对倾向进行了详细的分析,并讨论了对基于钒的Kagome超导体A V 3 SB 5的含义。
堆叠自由度是调整材料特性的关键因素,并且已在分层材料中进行了广泛的研究。最近发现Kagome超导体CSV 3 SB 5在T CDW〜94 K下方显示出三维CDW相位。尽管对内平面调制进行了彻底的研究,但平面外调制仍然模棱两可。在这里,我们的极化和温度依赖性拉曼测量结果揭示了C 6旋转对称性的破坏,并且在大约120°的三个不同域的存在下,彼此之间存在三个不同的域。观察结果表明,CDW相可以自然解释为2C交错阶相,相邻层显示相对π相移。此外,我们在大约65 K处发现了一阶结构相变,这是由于堆叠断层而引起的堆叠顺序diSorder相变,并受到CS相关唱片模式的热磁滞行为的支持。我们的发现突出了CSV 3 SB 5中堆叠自由度的重要性,并提供了结构见解,以理解超导性和CDW之间的纠缠。
一个单个铁磁kagome层被预计将实现具有量化霍尔电导的Chern绝缘子,在堆叠后可以变成具有较大异常霍尔效应(AHE)和磁性光学活性的Weyl Semimetal。的确,在Kagome双层材料Fe 3 Sn 2中,检测到了一个大的AHE。为了直接探测负责任的频带结构的特征,我们除了在广泛的频率范围内的对角光导率外测量光霍尔电导率光谱。由于前者是对AHE的固有贡献的能量选择性度量,因此我们借助从第一个原理计算获得的动量和带分解的光学传导频谱来确定它们的共同起源。我们发现,低能量的转变,在动量空间中追踪“螺旋体积”,让人联想到以前预测的螺旋结节线,从而实质上有助于AHE,这进一步增加了来自多个高能量互动过渡的贡献。我们的研究还表明,在这种库莫磁铁中,局部库仑相互作用导致了Fermi水平附近的显着带重建。
Chiral kagome superconductivity modulations with residual Fermi arcs in KV 3 Sb 5 and CsV 3 Sb 5 Authors: Hanbin Deng 1 *, Hailang Qin 2 *, Guowei Liu 1 *, Tianyu Yang 1 *, Ruiqing Fu 3 *, Zhongyi Zhang 4 , Xianxin Wu 3 †, Zhiwei Wang 5,6 †,Youguo Shi 7,8,9†,Jinjin Liu 5,6,Hongxiong Liu 7,8,Xiao-Yu Yan 1,Wei 1,Wei 1,Xitong Xu 10,Yuanyuan Zhao 2,Yuanyuan Zhao 2,Mingsheng Yi 11,Gang Yi 11,Gang Xu 11,Gang Xu 11,Hendrik Hohmann 12,Hendrik Hohmann 12,hendrik Hohmann 12,sofie castro castro castrun decto and dectoholbükk。 Sen Zhou 3,Guoqing Chang 15,Yugui Yao 5,6,Qianghua Wang 16,Zurab Guguchia 17,Titus Neupert 13,Ronny Thomale 12,Mark H. Fischer 13,Jia-Xin Yin Yin 1,2†物理学:1个物理学:1个科学和科学技术系,Shengong,Shengong。2广东港量子科学中心大湾大湾地区(广东),中国深圳。 3理论物理学理论物理学研究所的CAS关键实验室,中国科学院,北京100190,中国。 4香港科学技术大学物理系,中国香港清水湾。2广东港量子科学中心大湾大湾地区(广东),中国深圳。3理论物理学理论物理学研究所的CAS关键实验室,中国科学院,北京100190,中国。4香港科学技术大学物理系,中国香港清水湾。4香港科学技术大学物理系,中国香港清水湾。
国家固体微观结构实验室,物理学学院,材料科学和智能工程学院,南京大学高级微观结构合作中心,南京大学,南京210093,B北京国民北京国家实验室,北京国民实验室,北京凝聚力物理学,物理学,研究所,中国北非科学院,北非。 d在上海微型系统与信息技术研究所(SIMIT),中国科学学院,上海200050年中国E上海同步辐射设施,上海高海高级研究所中国科学院,中国科学院中国科学院,中国科学院,中国科学院,中国科学学院,中国国家科学院,中国纽约州纽约大学及化学实验室,CORIDIANTION,COMODIANTION,CONEDINAL NENAN CONEMINISTION,CHICORINATION CHICORINIAND,COMODINAIDE,CHICORINATY CONIDIANT,CHICORINATY CONIDINAL,CHICONINIDER,南京210023,中国Nanjing 211806,中国h国家同步加速器辐射实验室,中国科学技术大学,Hefei 230029,中国I Songshan Lake材料实验室,Dongguan 523808,中国
在篮子编织和宗教仪式中使用的Kagome晶格(包括几何沮丧的角落共享三角形)已成为一个令人兴奋的平台,用于研究量子物理学中物质的奇异阶段,例如量子旋转液体,Chern Magnitism,Chern Magnisism,Chiral Chiral Charge Mentive Mentive Pover和Topodic offercatipation Polidsic officalistic topicalistic topical officatipation topicalistic topical officatipation topicalistic topical officatipation。尽管对kagome化合物产生了极大的兴趣,但该晶格内强拓制绝缘子的探索仍然很少。在这项工作中,我们提出了一个新的Kagome化合物家族,R V 6 GE 6(r =稀土原子),以容纳如此强大的拓扑绝缘体阶段。此阶段的特征是反向散射的弹性表面状态,其由由于带反转而产生的散装绝缘间隙保护。希尔伯特空间中频带结构的拓扑不变性使我们能够识别不同类别的间隙带结构,并确认在r v 6 ge 6中通过从头开始计算的费米能量附近的频段存在z 2的拓扑不变。我们的调查确立了R V 6 GE 6作为Kagome化合物中强大的拓扑绝缘子家族,进一步扩大了这种异国情调的晶格几何形状中的拓扑可能性。值得注意的是,费米能量附近的电子结构以钒kagome晶格平面为主导,这为从琐碎的带中孤立地研究Kagome物理学提供了令人兴奋的机会。此外,在R V 6 GE 6中观察拓扑绝缘体阶段,其中钒价状态在D轨道中,创造了一个前所未有的机会,通过在钒层中的掺杂液中引入拓扑状态,并引入了钒站点,并引入了不合规的d -electrons。
表面区域附近的电子状态可能与散装状态不同,这对于理解在表面和半导体,能量和催化剂中的各种物理现象中至关重要。在这里,我们通过将具有纤维控制的贵重气体沉积贵重气体,报告了角度分辨光发射光谱的异常表面区域带增强效应。与常规的表面污染相反,在贵族气体吸附的情况下,表面区域SB带的强度可以增强三倍以上。同时,对增强的表面区域带观察到了孔掺杂效应,其他频带几乎不变。掺杂效果更明显,较重的贵重气体。我们提出,贵族天然气原子有选择地将碱金属空缺位点填充在地面上,从而改善了表面状况,增强了表面区域带,并有效地将其与Pauli排斥机制相兴奋。我们的结果提供了一种独特而可逆的方法,可以通过受控的表面贵族加气沉积来改善表面条件和调整表面区域。
