没有违反杜邦或其他人拥有的任何专利或商标的自由。因为使用条件和适用的法律可能因某个位置而有所不同,并且可能会随着时间而变化,因此客户负责确定产品和本文档中的信息是否适合客户使用,并确保客户的工作场所和处置惯例符合适用的法律和其他政府法规。本文中所示的产品可能无法出售和/或在代表杜邦的所有地域中可用。提出的索赔可能未批准在所有国家 /地区使用。杜邦对本文档中的信息不承担任何义务或责任。引用“杜邦”或“公司”是指除非另有明确指出,否则杜邦法律实体将产品出售给客户。没有保证;明确排除了对特定目的的适销性或适用性的所有暗示保证。
我们探索了矩形 Kapton 薄膜上单个折痕的粘塑性行为,Kapton 薄膜是几种受折纸启发的薄纱空间结构设计中最基本的构建块。这是折痕薄膜机械行为中经常被忽视的一个组成部分,它会影响部署动力学和可重复性。首先,我们展示了一些实验,这些实验突出了 Kapton 的粘性特性对折痕产生过程的影响,以及折痕的平衡角度如何由塑性和粘度的组合决定。作为实验的一部分,我们建立了一个强大的实验程序,能够创建可重复的折痕。然后,我们将之前的建模工作扩展到一种简单的粘塑性材料中,该材料结合了标准线性模型和摩擦元素来模拟永久变形。使用一系列 Kapton 松弛测试校准材料模型。然后,我们使用它来模拟我们的折痕实验,使用商用有限元包中的 1D 梁元素。尽管定量差异仍然很大,但我们的分析能够捕捉到实验中观察到的趋势。我们的结果强调需要对聚合物薄膜的粘塑性进行进一步的实验和建模。
版权所有©2018杜邦。保留所有权利。Dupont Oval徽标,Dupont™和所有用®或™表示的杜邦产品是E. I. Du Pont de Nemours和Company或其分支机构的注册商标或商标。此信息对应于我们当前关于该主题的知识。仅提供您自己的实验的可能建议。但是,无意代替您可能需要进行的任何测试来确定我们产品的适用性。随着新知识和经验可用,此信息可能会进行修订。由于我们无法预料到最终用途条件下的所有变化,因此杜邦不做任何担保,并且不承担与此信息的任何使用有关的责任。本出版物中的任何内容均不得被视为根据或建议侵犯任何专利权的执行许可。K-29424(10/18)
观测近地环境中的尘埃和碎片是一个具有巨大商业和科学意义的领域,对于最大限度地延长卫星的运行和商业生命周期以及降低日益增多的低地球轨道 (LEO) 宇航员的风险至关重要。为此,监测和评估粒子通量对于航天工业和依赖轨道基础设施数据产品/服务的更广泛的社会经济利益至关重要。我们设计了一种被动式太空尘埃探测器来调查低地球轨道的尘埃环境——轨道尘埃撞击实验 (ODIE)。ODIE 设计用于在低地球轨道部署约 1 年,然后返回地球分析尘埃颗粒产生的撞击特征。该设计强调能够区分与人类太空活动有关的轨道碎片 (OD) 和自然产生的毫米到亚毫米级微流星体 (MM) 群。 ODIE 由多个 Kapton 箔组成,这些箔显示出巨大潜力,可以有效保存撞击粒子的尺寸和化学细节,残留物化学可用于解释来源(OD 与 MM)。LEO 是一个恶劣的环境——原子氧的强烈腐蚀作用会损坏 Kapton 箔——需要使用保护涂层。Kapton 的常见涂层(例如 Al、SiO 2 等)对于后续分析和解释 OD 与 MM 的来源存在问题,因为它们是 MM 或 OD 的常见元素成分,或者 X 射线发射峰与用于区分 MM 与 OD 的元素的峰重叠。因此,我们建议使用钯涂层作为此应用的替代品。在这里,我们报告了钯作为 Kapton 基被动式粉尘探测器的保护涂层在暴露于原子氧和撞击时的性能。当受到撞击时,我们观察到较厚的涂层会受到影响
Fralock 是一家提供全方位服务的解决方案提供商,提供模切、激光切割、层压、数控加工和 CAD 切割服务。我们是一家通过 ISO 9001、AS9100 和 ISO 13845 认证的公司。我们专注于先进、创新和高性能材料、压敏胶带、粘合剂、工程陶瓷、EMI/RFI 屏蔽、导热材料、泡沫、橡胶、Kapton ®、Nomex ®、Mylar ®、箔和定制复合材料。Fralock 制造杜邦 TM Cirlex ®(唯一授权商)和多层聚酰亚胺无胶和有胶层压板。我们是杜邦 TM 白色 Kapton ® 的独家经销商。Fralock 致力于从设计开发到产品实现提供卓越的客户服务。
航天器被敲定,随后是一个迭代过程,在所选媒介中定制艺术品以重现功能:高和低发射胶带和Kapton Tape。将艺术品集成到狭窄的表面百分比覆盖范围和允许的材料选择中是艺术家和工程师的独特而令人兴奋的学习体验。
摘要当两种材料彼此接触时,众所周知,电荷可以从一个表面转移到另一个表面。这种现象被称为扭转效应。开发了底压系列,以确定当两种材料相互接触时电荷转移的可能性。这项研究旨在研究靠近Minia市的碳酸钙含量在与Minia市附近的沉积岩石中的作用,并在与Kapton和Kapton和Polymethyl甲基丙烯酸酯(PMMA)接触时在岩石表面产生的电荷。选择了两种材料,因为Kapton靠近系列的底部,而PMMA靠近顶部。发现,岩石中较高的碳酸钙含量使其更有可能获得负电荷,从而降低了其在Triboelectric系列中的位置。某些碳酸钙含量低的岩石在其表面上有几个碳酸钙富含钙的岩石含量富含碳酸钙的口袋,从而在高接触力下接触的表面上有低电荷,这是因为易于破裂的碳酸钙袋,这些碳酸钙袋将碳酸钙颗粒沉积在另一表面上具有相反的电荷。关键字摩洛电效应,碳酸钙,岩石,落压电源系列。介绍了数千年的介绍,众所周知,如果两种材料接触,则有时可以充电,并且它们之间可能会发生电荷。在现代,这种现象被命名为摩洛电效应[1-3]。这种效应已用于从范德毛发发生器[4]到扭矩电性纳米生成器[5-10]的多个应用中。摩擦电效应的原因仍然未知,离子转移和电子转移可能是解释的,[11]。为了预测从任意两个表面的接触中产生的费用的数量和迹象,开发了Triboelectric系列[12-14],其中较高的A
建议对暴露的腔体组件使用免清洗 (NC) 助焊剂。不建议使用压力喷雾、钢丝刷或其他清洁方法,因为这些方法可能会刺穿 MEMS 设备并使其无法使用。如果要清洁 PCB,可以使用水溶性 (WS) 助焊剂。但是,建议在清洁过程之前使用粘性 Kapton 胶带、乙烯基盖或其他方式保护组件腔体。这种覆盖将防止清洁过程导致 MEMS 设备损坏、污染和异物进入设备腔体。
聚酰亚胺(尤其是 Kapton® 薄膜)在航天器结构中随处可见,可用于多层绝缘 (MLI) 毯 [3-6],因为它们耐用、柔韧、化学惰性,可承受极端温度和辐射条件 [7]。Mylar 是一种聚对苯二甲酸乙二醇酯 (PET),用于航天器外部的 MLI 毯,用于被动热控制目的 [8-10]。多面体低聚倍半硅氧烷 (POSS) 已被提议作为聚酰亚胺 (PI) 基纳米复合材料的增强材料,以提高其热机械和抗 AO 性能 [11,12] 在 AO 暴露下,POSS-PI 会形成一层二氧化硅 (SiO2) 表面层,可抵抗 AO 侵蚀,从而减少本体(即 PI)基质的 AO 侵蚀。Thermalbright°N 就是这样一种结合了 POSS 的材料。