1。Robert Kasumba,Dom CP Marticorena,Anja Pahor,Geetha B. Ramani,Imani Masters Goffney,Susanne M. Jaeggi,Aaron R Seitz,Jacob R Gardner和Dennis Lbarbour。 分布潜在变量模型,并在主动认知测试中应用。 认知和发展系统上的IEEE交易,2025年。 [在出版物中接受/接受] 2。 罗伯特·卡索巴(Robert Kasumba)和马里恩·诺伊曼(Marion Neumman)。 教育的实用情感分析:学生人群采购的力量。 在AAAI人工智能会议论文集,第38卷,2024年3。 Robert Kasumba,Guanghui Yu,Chien-Ju Ho,Sarah Keren和William Yeoh。 数据驱动的通用行为剂的目标识别设计,2024年。 [preprint,在提交中] 4。 Yu,Robert Kasumba,Chien-Ju Ho和William Yeoh。 关于人类对人类协作中AI行为的信念的效用。 ARXIV预印arxiv:2406.06051,2024。 [preprint,在提交中] 5。 Philip Kreniske, Olive Imelda Namuyaba, Robert Kasumba , Phionah Namatovu, Fred Ssewamala, Gina Wingood, Ying Wei, Michele L Ybarra, Charlotte Oloya, Costella Tindyebwa, Christina Ntulo, Vincent Mujune, Larry W Chang, Claude A Mellins, and John S桑特利。 用于预防艾滋病毒和相关青年健康问题,性健康,心理健康和药物使用问题的手机技术(青年健康SMS):飞行员随机对照试验的协议。 JMIR研究方案,12:e49352,2023。doi:10.2196/49352 6。 人类行为和新兴技术,2022,2022 7。Robert Kasumba,Dom CP Marticorena,Anja Pahor,Geetha B. Ramani,Imani Masters Goffney,Susanne M. Jaeggi,Aaron R Seitz,Jacob R Gardner和Dennis Lbarbour。分布潜在变量模型,并在主动认知测试中应用。认知和发展系统上的IEEE交易,2025年。[在出版物中接受/接受] 2。罗伯特·卡索巴(Robert Kasumba)和马里恩·诺伊曼(Marion Neumman)。教育的实用情感分析:学生人群采购的力量。在AAAI人工智能会议论文集,第38卷,2024年3。Robert Kasumba,Guanghui Yu,Chien-Ju Ho,Sarah Keren和William Yeoh。 数据驱动的通用行为剂的目标识别设计,2024年。 [preprint,在提交中] 4。 Yu,Robert Kasumba,Chien-Ju Ho和William Yeoh。 关于人类对人类协作中AI行为的信念的效用。 ARXIV预印arxiv:2406.06051,2024。 [preprint,在提交中] 5。 Philip Kreniske, Olive Imelda Namuyaba, Robert Kasumba , Phionah Namatovu, Fred Ssewamala, Gina Wingood, Ying Wei, Michele L Ybarra, Charlotte Oloya, Costella Tindyebwa, Christina Ntulo, Vincent Mujune, Larry W Chang, Claude A Mellins, and John S桑特利。 用于预防艾滋病毒和相关青年健康问题,性健康,心理健康和药物使用问题的手机技术(青年健康SMS):飞行员随机对照试验的协议。 JMIR研究方案,12:e49352,2023。doi:10.2196/49352 6。 人类行为和新兴技术,2022,2022 7。Robert Kasumba,Guanghui Yu,Chien-Ju Ho,Sarah Keren和William Yeoh。数据驱动的通用行为剂的目标识别设计,2024年。[preprint,在提交中] 4。Yu,Robert Kasumba,Chien-Ju Ho和William Yeoh。关于人类对人类协作中AI行为的信念的效用。ARXIV预印arxiv:2406.06051,2024。[preprint,在提交中] 5。Philip Kreniske, Olive Imelda Namuyaba, Robert Kasumba , Phionah Namatovu, Fred Ssewamala, Gina Wingood, Ying Wei, Michele L Ybarra, Charlotte Oloya, Costella Tindyebwa, Christina Ntulo, Vincent Mujune, Larry W Chang, Claude A Mellins, and John S桑特利。用于预防艾滋病毒和相关青年健康问题,性健康,心理健康和药物使用问题的手机技术(青年健康SMS):飞行员随机对照试验的协议。JMIR研究方案,12:e49352,2023。doi:10.2196/49352 6。人类行为和新兴技术,2022,2022 7。Maya Topitzer,Yueming Kou,Robert Kasumba和Philip Kreniske。 不同的受众与福祉应用程序上的用户情感表达有何关系。 Mary Nsabagwa,Isaac Mugume,Robert Kasumba,Joshua Muhumuza,Steven Byarugaba,Eugene Tumwesigye和Julianne Sansa Otim。 基于无线传感器网络的自动的条件监视和报告框架Maya Topitzer,Yueming Kou,Robert Kasumba和Philip Kreniske。不同的受众与福祉应用程序上的用户情感表达有何关系。Mary Nsabagwa,Isaac Mugume,Robert Kasumba,Joshua Muhumuza,Steven Byarugaba,Eugene Tumwesigye和Julianne Sansa Otim。基于无线传感器网络的自动
引言光与原子旋转的耦合是使用光子(1-4)的量子信息处理中的主要工具,并以精确的光学光谱法,实现了原子结构(5、6),时间和频率标准(7)和实验室搜索的确定(8)。这些应用的性能取决于旋转的相干时间以及彼此相处的效率。在致密的原子气体中,光可以有效地与集合的集体原子自旋搭配(9)。然而,在室温及以上,由于原子与环境的相互作用以及动作倾向,这种集体旋转易于发动,这通常将相干时间限制在10至100 ms(10-14)。碱蒸气可以达到1分钟(15 - 18)的连贯时间,并且成功地用于量子磁孔应用中(9),但高质量的涂料在升高的温度下降解并因此限制了碱密度。贵重气体的奇数同位素(例如3他)的核中旋转非零。核自旋受到完整的电子壳的保护,因此表现出非常长的连贯时间,可能是很多小时。这对应于用于精确传感(19,20),医学成像(21)和寻找新物理学(22 - 25)的狭窄核能共振(NMR)(NMR)。由于贵重气体对从红外线到紫外线的光透明,因此对其核自旋的制备和监测通常依赖于与另一种旋转气体的碰撞(26,27)。我们观察到一个实质性的Noble-Gas NMR传感器使用与碱原子的自旋交换碰撞。因为碱旋转确实会亮起来,因此可以按照这种方式进行NMR信号的拾取,并以这种方式进行狭窄的光谱和长期旋转的旋转优先信号(28 - 31)。然而,各种量子光学应用都需要在光和贵族旋转之间有效的双向耦合(32 - 36)。从未实现过与长寿命核自旋的共振光学激发相对应的这种耦合。在这里,我们意识到由碱旋转介导的光和贵族旋转之间的连贯的双向耦合。
基于三波混合的参数放大器是电磁信号处理的基本过程[1],无论是在光学和微波频域中。最近,随着量子信息科学的出现,三波混合为单个光子水平[2,3]的测量提供了一个基本的构建块,在此至关重要的是,非线性混合过程纯粹是消除的。一类重要的参数放大器利用三波混合来通过向下转换较高的频率泵场的转换来扩大传入的信号场。放大过程涉及在角频率下传入的泵photon!p以频率分为传出的信号和怠速光子!s和!i,在哪里进行。p¼!sÞ!i。自非线性光学元件早期以来,就已经知道了经典级别的三波混合过程原则上是可逆的和相位敏感的。在三波混合的情况下,这是最容易看到的,这是通过制作不耗尽的泵近似,从而导致信号和惰轮的线性两端口散射矩阵。通常仅在信号端口的输入中运行非排定副标,从而导致相位呈现相位的放大器,并带有功率增益,G 0。However the S matrix has two eigenvectors corresponding to inputs on both signal and idler port, with reciprocal eigenvalues given approximately by 2 ffiffiffiffiffiffi G 0 p , 1 = 2 ffiffiffiffiffiffi G 0 p , the former corresponding to coherent amplifica- tion of signal and idler with power gain 4 G 0 , and the latter to coherent attenuation (CA).在CA中,信号和惰轮都用正确的相对相施加,并且它们连贯地组合到泵频率,从而导致功率衰减1 = 4 g 0;这是相干扩增的时间转换过程。直到最近,还没有几乎无损的微波放大器,可以通过此简单的矩阵来很好地建模。但是,我们在这里使用的约瑟夫森参数转换器(JPC)几乎是无损的,并且性能限制了量子[5,6]。连贯的衰减和扩增