摘要这项研究研究了聚会岛上的热环流(21°07'S 55°32'E),重点是该地区的复杂地形。分析了来自Bio -Maïdo运动的观察结果,以及使用Mesonh模型进行了2天的高分辨率模拟,以了解热驱动机制。该模拟的水平分辨率为100 m,并采用垂直拉伸的网格,在最低水平下达到1 m的分辨率。确定了两个不同的风度,其特征是夜间30 m厚的层内盛行的katabatic流,而白天在150至200 m的层中表现出一个分离的流动。通过对表面测量结果进行验证确认了模拟,从而实现了热风循环的详细研究。结果表明,贸易风的强度显着影响热循环的发展。复杂的分层结构。在7 m s -1的强度下,贸易风阻止了坡度上的热环流的发展,并导致局部和区域循环之间的收敛区的出现。对微风建立期的分析表明,katabatic流量在35分钟内稳定,比整形流动更快,这需要110分钟。动量和热预算分析提供了对热循环的主要驱动因素的见解:浮力加速,受解剖流量开始期间局部表面加热的影响以及在katabatic流量开始期间局部表面冷却。
对负责任的天然材料充满热情,我们在Den Mark中设计和生产。具有质量的焦点,我们的大多数DE标志都是小心地搭配的,将回收夹紧皮革作为一种有趣的年年至元素。a u n i q u e m a t e r i al a f f f e r s b o n d s b o n d sime de sign op portunities,r e m a r a r k a b a b l e可用性以及质量和饰面,可以持续一生。是开发产品用于私人住宅,ho tels,餐馆或距离空间的产品
摘要:此演讲基于通过运动原始功能动态系统的运动计划的概念。在不同的几何设置中,运动原始素可以作为动态控制系统的谎言组对称性的等效类别引入,而在特定方面,相对平衡作为对称性产生的运动。因此,它们是建立代表性原始库的自然选择,该库本身可以通过时间离散和状态空间量化来节省固有的dy-namic行为。这种方法为解决运动计划问题打开了各种选项:我们将通过混合a ∗搜索以及使用运动原始图的增强来研究基于图的计划。最后,我们返回起点,即控制动力学系统,并回答运动原语是否是某种意义上的最佳选择的问题。除其他外,具有运动原语的运动计划的概念可以应用于机器人技术和自动驾驶中的轨迹。
Pinker-Domenig博士是哥伦比亚大学Vagelos医师和外科医生学院(VP&S)的放射学系的乳房成像部长,也是奥地利维也纳医科大学放射学系的兼职教授。她是翻译和临床乳房和肿瘤学成像的专家。她的研究兴趣专注于具有高分辨率磁共振成像(MRI)的高级乳房成像(MRI),使用多个先进的MRI参数,混合成像(PET)/MRI具有特定的示踪剂,以及在肿瘤学成像中应用AI以开发成像生物标志物的精确药物。她在乳房和肿瘤学成像中发表了超过200份经同行评审的论文。https://www.ncbi.nlm.nih.gov/myncbi/1ree7pglgsf5q/bibliography/public/
您进入新的一年,作为YEM和贡献杂志,我们衷心感谢所有读者,贡献和支持者。您的见解,专业知识和奉献精神使该出版物成为该行业的重要资源,我们非常感谢您持续的参与。2025承诺,随着人工智能(AI)和数字技术的快速发展的影响,会发生前所未有的变化。这些创新不仅重塑了各个部门,还重新定义了我们的日常生活。变革速度为增长带来了新的可能性和方式,这曾经仅限于想象力。牲畜和动物喂养部门并不是这些当前发展以外的部门。人工智能和数字技术具有巨大的潜力,可以应对我们领域中一些最紧迫的挑战。在这里,我们可以期望看到一个重大影响:敏感的牲畜:人工智能支持的传感器和数据分析,动物健康,行为和饲料摄入量,提供有关农民的实时信息,以做出更有意识的决策并优化资源的使用。这可能导致动物福利治愈,死亡率降低并提高效率。•饲料公式和优化:人工智能算法,同时最大程度地降低环境影响,动物
纽约州学区无干扰学校实施指南 美国教育部教育技术办公室最近发布了一份资源文件,供学区实施个人设备政策,名为“共同规划:学生个人设备政策手册 (Playbook)”。(https://tech.ed.gov/device-policy-playbook) 该手册描述了其目的如下:它概述了学区和学校领导可以与学生、教育工作者和家长合作制定学区或学校政策的过程(步骤 1);明确定义一组共同目标(步骤 2);建立理解并促进在当地背景下的决策(步骤 3);并收集数据以进一步了解并根据需要修改政策(步骤 4),努力制定支持学校领导希望看到的行为和学校氛围转变的政策。该手册还强调了关键的公平问题,并指出了学校规范设备使用方法的一些意想不到的后果。纽约州对课堂上使用个人设备的负面影响表示担忧。州长 Kathy Hochul 提出了一项全州范围的“无干扰学校”政策,以解决学业学习损失和心理健康影响问题。我们制定了这些与纽约州“无干扰学校”政策相一致的附加指南。在开始实施无互联网学习环境和“无干扰学校”政策的计划时,请考虑以下指南。我们还在 Playbook 中突出显示了可作为资源的领域。1. 设定明确的目标和理由
#59. 371. 102 4 Mar c 有效的课堂教学:提高学生成绩的研究型策略 Oleh: Marzano, Robert J.; Pickering, Decra J.; Pollock, Jane E. Alexandria: 课程监督与发展协会,2001 Jumlah: PASCA: 2 exp
摘要 陡坡上的下降风非常常见,但对其了解或模拟甚少。本研究重点研究陡峭的高山斜坡上方的下降风急流。我们评估了湍流动能 (TKE) 和雷诺剪应力预算方程中的浮力项。我们特别关注斜率和沿斜率湍流显热通量对这些项的贡献。在最大风速高度以下和以上的四个测量水平可以分析沿垂直剖面的浮力效应如下:(i) 如在稳定条件下预期的那样,浮力往往会破坏 TKE 和最大风速高度 zj 以下急流内层区域的湍流动量通量;(ii) 结果还表明,浮力有助于在急流外层剪切区域(远高于 zj )产生 TKE,而在同一区域观察到湍流动量通量的消耗; (iii) 在最大风速附近机械剪切产生微弱的区域,浮力往往会破坏 TKE,而我们的结果表明,浮力往往会增加动量通量。本研究还提供了一个分析条件,用于确定由于浮力而产生的湍流动量通量与斜坡角度之间的极限,类似于已经为 TKE 提出的条件。我们重新引入了应力理查森数,它相当于雷诺剪切应力预算的通量理查森数。我们指出,通量理查森数和应力理查森数是表征除最大风速高度附近区域以外的下降气流的互补稳定性参数。
Katharina Ehrmann 博士是维也纳技术大学增材制造团队的团队负责人,正在攻读特许资格。她致力于拓宽聚合物光基增材制造的加工窗口并重新思考其背后的化学原理,以获得具有功能性的高性能部件,最近她获得了 Elise Richter 奖学金,以研究多材料 3D 打印的新方法(4 年,500k)。她曾在因斯布鲁克大学(奥地利)和爱丁堡大学(英国)学习化学。在维也纳技术大学(奥地利)的 Robert Liska 教授团队攻读博士学位期间,Katharina 开发了用于组织工程应用的自增强热塑性聚氨酯。随后,她于 2021 年成为昆士兰科技大学 (QUT,澳大利亚) 的博士后研究员,在那里她在 Christopher Barner-Kowollik 教授的团队中研究波长分辨的光聚合物网络,自 2023 年回到维也纳技术大学以来,一直是昆士兰科技大学的访问研究员。她还是国际青年化学家网络 (IUPAC 附属组织) 的成员,目前担任该组织的财务主管,并获得过多个著名奖项和奖学金,如 Maria Schaumayer 博士论文奖、维也纳工程与医学中心论文奖、Christiana Hoerbiger 青年研究人员流动奖、CAS 未来领袖奖学金、FFG 女性创新者奖学金以及最近因多材料打印研究获得的 Fehrer 奖。