但是,系统的特定设计和实际实施因国家而异。日本系统的关键特征是它不受法律管辖,因此没有期望在批准过程中获得法院判决。相反,它实际上是根据卫生,劳动和福利部董事(“ MHLW”)发出的行政通知(“两个董事的通知”)1。MHLW在“药物专利信息报告表”中根据名牌药物制造商或专利权人提供的信息审查了涵盖品牌药物的相关专利,该专利通常不公开。如果MHLW认为后续药物会侵犯专利,则不会颁发以下药物的营销授权。
为工程专业的学生设计足够的实验室以激发他们的创造力并理解实际问题非常重要。虽然世界和学习目标都在发生变化,但基于问题的学习 (PBL) 可以被视为教授高级计算机网络的理想教学工具 [17]。用于教授计算机网络和嵌入式系统的 PBL 意味着重要案例的实际说明。目前,有几种应用程序可以让学生测试他们在网络方面的知识和实践技能。这些工具在提供的功能方面有很大不同,从功能有限的最简单工具到功能众多的最复杂工具。更高级课程的一个常用示例是 Boson Net(参见 [18]),这是一个模拟程序,例如 Cisco Packet Tracer。它由三部分组成:
为了增强蓝细菌的生长元有关弹性菌的生长,本研究使用共培养进行了直接筛查氰基细菌生长细菌(CGPB)的直接筛查。分离出四个新型CGPB菌株并在系统发育上鉴定出来:Rhodococcus sp。AF2108,Ancylobacter sp。 GA1226,Xanthobacter sp。 af2111和Shewanella sp。 OR151。 与最有效的CGPB菌株Rhodococcus sp。 af2108,在单一培养物中,蓝细菌细胞的叶绿素含量增加了8.5倍。 流式细胞仪分析显示,与犀牛Sp的共培养中,弹性链球菌细胞的数量增加了3.9倍。 AF2108。 这些结果归因于正向散射和叶绿素荧光强度的增加。 新的犀牛菌株似乎是迄今为止描述的最有效的CGPB之一。AF2108,Ancylobacter sp。GA1226,Xanthobacter sp。 af2111和Shewanella sp。 OR151。 与最有效的CGPB菌株Rhodococcus sp。 af2108,在单一培养物中,蓝细菌细胞的叶绿素含量增加了8.5倍。 流式细胞仪分析显示,与犀牛Sp的共培养中,弹性链球菌细胞的数量增加了3.9倍。 AF2108。 这些结果归因于正向散射和叶绿素荧光强度的增加。 新的犀牛菌株似乎是迄今为止描述的最有效的CGPB之一。GA1226,Xanthobacter sp。af2111和Shewanella sp。OR151。 与最有效的CGPB菌株Rhodococcus sp。 af2108,在单一培养物中,蓝细菌细胞的叶绿素含量增加了8.5倍。 流式细胞仪分析显示,与犀牛Sp的共培养中,弹性链球菌细胞的数量增加了3.9倍。 AF2108。 这些结果归因于正向散射和叶绿素荧光强度的增加。 新的犀牛菌株似乎是迄今为止描述的最有效的CGPB之一。OR151。与最有效的CGPB菌株Rhodococcus sp。af2108,在单一培养物中,蓝细菌细胞的叶绿素含量增加了8.5倍。流式细胞仪分析显示,与犀牛Sp的共培养中,弹性链球菌细胞的数量增加了3.9倍。AF2108。 这些结果归因于正向散射和叶绿素荧光强度的增加。 新的犀牛菌株似乎是迄今为止描述的最有效的CGPB之一。AF2108。这些结果归因于正向散射和叶绿素荧光强度的增加。新的犀牛菌株似乎是迄今为止描述的最有效的CGPB之一。
摘要 本文探讨了项目式学习 (PBL) 与艺术在科学教育中的融合,以培养 K-12 学生的批判性思维、协作和创造性解决问题的能力。PBL 以建构主义学习理论为基础,强调以学生为中心的探究和现实世界的问题解决。通过将艺术融入科学课程,教育工作者可以通过多模式学习解决多样化的学习风格、提高参与度并促进更深入的理解。成功项目的案例研究强调了这种跨学科方法的有效性,而最佳实践则提供了可行的实施策略。本研究强调了将艺术融入 PBL 的变革潜力,以培养 21 世纪的技能并弥合学科鸿沟,丰富教学和学习体验。 关键词:项目式学习 (PBL)、艺术融合、科学教育、跨学科学习、批判性思维。 简介 项目式学习 (PBL) 是一种教学方法,策略性地用于将各个学科结合在一起并培养 K-12 学生的批判性思维。 PBL 在科学教育、高级问题解决和设计策略方面尤其有效。通过 PBL,学生的参与和动机通过积极的深度学习实现。学生在学习 K-12 课程时需要掌握两项基本技能,即批判性思维和应用知识。此外,学生有机会以小组形式工作并在协作氛围中学习 [1, 2]。PBL 最重要的方面之一是其内容和体验面向现实世界的问题。传统的教学指导通常会导致学生仅记住所提供信息的 25%。PBL 的一个主要好处是学生可以记住所获得信息的 90%。学生还可以培养四种批判性思维技能,这些技能在现实和科学问题解决情况下必不可少。学生参与小组工作,而不是单独工作。PBL 创造了多样化、紧张、现实的准备环境,并帮助学生奠定竞争技能的基础。此外,学生准备获得复杂的技能和态度;他们可以承担最大的责任并在其范围内取得成功。PBL 有助于承担和联系复杂的目标。总体而言,学生在 PBL 中扮演着内在角色;他们在准备过程中成为积极、投入和忠诚的参与者,并从本质上增加了他们的责任。反过来,他们感到足够安全,可以在活动和未来规划中做出积极的决定。然而,考虑到这些挑战,必须考虑四个主要因素:准备、内容标准一致性、教师的态度和观点,以及对 PBL 方法的总体看法 [3, 4]。
主持人:Dr hab. Anna Bajorek,教授UŚ,卡托维兹西里西亚大学物理研究所,教授哈博士玛丽亚·奥古斯蒂尼亚克 (Maria Augustyniak),卡托维兹西里西亚大学教授。哈博士罗伯特·穆西奥(Robert Musioł),卡托维兹西里西亚大学,博士。 Sławomir Boncel,教授PŚ,西里西亚理工大学,Sławomir Sułowicz 博士,卡托维兹西里西亚大学,Anna Nowak 博士,卡托维兹西里西亚大学 N9:30
伊斯兰阿扎德大学阿利亚·卡图尔分公司电气工程系0000-0001-7004-3311; 2。0000-0001-6841-534X; 3。0000-0003-3720-8318 doi:10.15199/48.2024.05.47缓解亚同步共振和改进的低电压 - 电压直通乘车乘坐串联双率连接感应感应机器的能力,使用桥梁固体固体固体型固体固体型FCL摘要。串联电容器补偿方法被广泛用于传输线,以扩大传输线的主动功率能力。他们为连接大规模风电场(WFS)的连接提供了一种实用的解决方案,以将风能传输到长距离负载中心的网格中。集成大规模WFS与电力系统可能导致亚同步共振(SSR)现象和通过(LVRT)通过串联电容补偿传输线连接的WFS中的(LVRT)挑战(LVRT)挑战。本文建议使用桥梁型固态故障电流限制器(BSFCL)来阻尼SSR并增强集成到电力系统的串联电容补偿WFS的LVRT性能。本研究中建模的WF是一台聚集的双喂养机器(DFIM)。修改了第一个标准基准IEEE系统,并在PSCAD/EMTDC软件中进行了模拟,以显示BSFCL功能,用于抑制SSR并改善本文中WFS的LVRT要求。考虑到模拟结果,发现BSFCL有效地减轻了SSR振荡,并满足了集成到功率系统的串联电容式补偿WF的LVRT要求。Streszczenie。串联传感器补偿方法被广泛用于传输线,以增加传输线的主动能力。提供了一个实用的解决方案,可让您将大型风电场(FW)连接到网络,以长距离施加负载中心将风能发送到网络。大规模FW与功率系统的集成可以导致同步共振现象(SSR)以及与串行,电容补偿传输线连接的FW中与低压传递(LVRT)相关的挑战。本文建议使用半导体桥 - 型短电路电源限制器(BSFCL)来抑制SSR,并提高LVRT PE LVRT效率,并与电容性补偿与电容系统集成在一起。WF是具有双电源(DFIM)的聚合感应机。在本文中,第一个标准设计系统IEEE已在PSCAD/EMTDC软件中进行了修改和模拟,以显示BSFCL抑制SSR并提高PF的LVRT要求的能力。考虑到模拟的结果,发现BSFCL有效地舒缓了SSR振荡,并满足了与电源系统集成的电容补偿的串行FW的LVRT要求。通常,WF远离负载中心,需要长的传输线以将风力传输到它们。按串联电容器进行补偿传输线是一种实用方法,是增加长距离传输线功率传输能力[1]。两个SSR事件的细节均在参考文献[2-3]中列出。美国。美国。(减轻同步共振,并提高基于连续补偿的感应机,通过使用桥梁类型FCL的半导体FCL的感应机,在风电场中行驶的能力:风场,风场,风场,LVRT,LVRT,SSR,SSR,DFIM,BSFCL关键字: Wind,LVRT,SSR,DFIM,BSFC简介升级了风能的贡献和传播是与电网相关的WF的两个主要挑战。howver,串联电容器的应用可能导致WFS中的亚同步共振(SSR)发生[2]。此外,使用串联电容器减少了透射阻抗,并导致在短路断层期间增加WF故障电流[1-2]。SSR会导致在一个或多个子同步频率下增加与电力系统和发电机轴的能量交换,这可能会加载到风力涡轮机的故障,然后从功率系统中断开WF集成网格代码。基于LVRT要求,WF必须在不同的断层中保留服务,以确保WFS中的SSSR EVENS。在2009年,由于德克萨斯州南部的SSR事件,大量WFS的风力涡轮机被销毁。美国[4]。 在2012年,这种现象在中国圭恩地区的WF中重复。 2017年8月至10月,得克萨斯州发生了三个SSR Circumpstances。 所有这些都出现在与电力系统连接的基于DFIMS的串联综合WF中。 有两种方法可以减轻DFIM- 中的SSR美国[4]。在2012年,这种现象在中国圭恩地区的WF中重复。2017年8月至10月,得克萨斯州发生了三个SSR Circumpstances。所有这些都出现在与电力系统连接的基于DFIMS的串联综合WF中。有两种方法可以减轻DFIM-
使用适当的诊断工具对于土壤传播的蠕虫控制和消除工作至关重要。Kato-Katz(KK)是最常用的诊断,但最近其他工具,例如实时定量聚合酶链反应(多重QPCR),开始使用更多。在这里,我们评估了泰国五个蠕虫物种的这两种诊断工具的性能。在没有黄金标准的情况下,可以使用潜在类别分析评估诊断性能。我们的结果表明,在高于2%多重QPCR的中等至高流行率的情况下,这比KK更敏感,对于东北省的Opisthorchis viverrini来说,这尤其明显。然而,对于低患病率,两种诊断症都遭受低灵敏度。两种诊断的特异性估计在所有设置中均为高(高于70%)。对于某些特定的蠕虫感染,例如O. viverrini,
今天的尼基斯佐维克(Nikiszowiec)是Katowice的表演者之一,也是参观VoivoDeship Capital的游客的“必看”点。许多客人首次进入尼克斯建筑的综合大楼,给人留下了深刻的印象。独特的开发刺激了甚至大多数经验丰富的环球旅行者的想象力,外墙,街道通道和Aromat-ic咖啡和美味的“kołocz”(蛋糕)的装饰在这里的一家咖啡馆(Cake)吸引了邻近城市的居民。石头铺好的街道,红色的窗台,与白色窗户百叶窗形成鲜明对比,而棕色的砖则给人留下了深刻的印象,好像时间已经停在这里一样。但是,时间在这里很快飞行,我们可以看到Nikiszowiec的变化更好。
数据采集分支。这个新的情报部门专门从在线社交网络获取信息,因此被称为社交媒体情报(SOCMINT 1)。 SOCMINT 的形成和发展仍在进行中,它与社交网络的传播同时进行。尽管如此,我们已经可以说,该情报部门在国家安全活动的许多领域发挥着越来越重要的作用。在很多情况下,它可以被视为一种填补空白的手段,因为它可以提供其他情报部门无法提供的信息,或者需要付出更大努力才能提供的信息。然而,新的情报部门不仅在数据采集方面需要新的程序和方法,而且在数据处理、分析和评估方面也需要新的程序和方法。尽管SOCMINT在理论和实践层面已经存在了十多年,但其理论至今尚未得到充分发展,这可能是因为它的发展与社交媒体/网络的出现密切相关。 。在一百多年前开发信号情报(SIGINT)时就发现了相似之处。就信号情报(SIGINT)而言,随着电磁通信的发展,它也能够发挥越来越重要的作用。
我们制作了一种基于人工智能的数字病理学 (AI-DP) 设备的原型,以探索自动扫描和检测用 Kato-Katz (KK) 技术制备的粪便中的蠕虫卵,该技术是诊断土源性蠕虫 (STH;蛔虫、鞭虫和钩虫) 和曼氏血吸虫 (SCH) 感染的现行诊断标准。首先,我们将原型全玻片成像扫描仪嵌入到柬埔寨、埃塞俄比亚、肯尼亚和坦桑尼亚的实地研究中。使用该扫描仪,扫描了超过 300 KK 厚的粪便涂片,总共得到 7,780 张视场 (FOV) 图像,包含 16,990 个带注释的蠕虫卵(蛔虫:8,600 个;鞭虫:4,083 个;钩虫:3,623 个;SCH:684 个)。约 90% 的带注释卵用于训练基于深度学习的物体检测模型。从 752 张 FOV 图像的未见过的测试集中,其中包含 1,671 个手动验证的 STH 和 SCH 卵(剩余 10% 的带注释卵),我们训练的物体检测模型从 KK 的共感染 FOV 图像中提取并分类了蠕虫卵