日期:2024年2月14日,星期三,15:30-17:00主持人:Atsushi Katsuki,总裁兼首席执行官,代表董事
模糊逻辑Mitsuo Gen,Ph.D.的杰出教授,模糊逻辑系统研究所(FLSI):东京科学大学(TUS)的高级研究科学家,研究所。Sci。&Tech。:访问社会研究员:柔软和apiems,现场首席编辑:工业工程领域的前沿工业工程杰出工业工程伊尔基旺·穆恩(Ilkyeong Moon)博士,P.E.富士岛教授,博士(Sci。),创新研究所教授,数字双单元,研究单元,计算学院,数学和计算科学系,东京技术学院,东京,日本东京,日本东京,机器学习杰出教授(ML)Masanobu Matanobu Matsumaru,Masanobu Matsumaru,Ph.D。 Kinoshita,博士学位,信息学系,工程学院,KINDAI大学,Higashiosaka,Osaka,Osaka,Japan Japan Safie Management实践奖KENJI WATANABE,建筑,土木工程和工业管理工程系教授,Nagoya技术,日本尼古拉尼古拉省Nagoya Institution,日本杰出教育领导力促进型,销售机构,销售,管理实践奖SATORU HOMMO,全球维修采购高级经理,全球ESD和维修,Olympus Corporation,Tokyo,日本杰出教授奖Andi Cakravastia Arisaputra Raja,S.T。
神经薄缠结是与AD相关的病理过程(Yokoyama等,2022)。这些病理特征有可能破坏突触和神经元活性,从而导致各种大脑区域的网络异常(Casula等,2022; Luo等,2023; Pless等,2023)。在AD患者的大脑中,已经检测到了各种神经生理特征,包括Preduneus Cortex(Casula等,2023)中的过度兴奋性和小脑皮质可塑性机制的损害(Di Lorenzo等人,2020年)。这些异常的神经活动可能导致AD中的神经元网络功能障碍,从而导致认知障碍。海马是用于记忆编码,存储和检索的关键大脑区域,是AD病理学影响的最早区域之一(Gillespie等,2016; Caccavano等,2020)。研究人员在神经振荡中检测到与在AD患者和动物模型的海马区域中使用脑电图或局部领域(LFP)记录(LOUX和UHLHAAS,2014; MILLER等,2018; JAFARI; JAFARI; JAFARI和KOLB)的20220; JAFARI和KOLB的2020;进一步探讨了它们在AD病理学背景下的作用,这揭示了在AD治疗中进行干预的潜在机会(Chan等,2021; Traikapi和Konstantinou,2021)。海马含有重要的中间神经元人群,在驱动神经元同步中起着至关重要的作用(Da Crugz等,2020; He He等,2021)。γ振荡与动物和人类的记忆和认知有关,并且可能在各种频率范围内都存在功能区别(Moby和Colgin,2018年)。特定的,缓慢的γ振荡(25 Hz -50 Hz)被认为可以增强海马内的记忆检索过程(Zheng等,2016),随着涉及较高记忆需求的任务中的慢速伽马活性增加了(Rangel等人,2016年)。海马锋利波纹波(SWR)在支持记忆合并和重播中起着重要作用(Buzsaki,2015; Katsuki等,2022)。SWR的破坏会损害记忆性能(Aleman-Zapata等,2022),而通过光遗传学刺激延长SWR的持续时间可改善迷宫任务期间大鼠的记忆力(Fernández-Ruiz等人,2019年)。研究表明,海马γ振荡和AD中的SWR缺陷(Hollnagel等,2016; Klein等,2016; Witton等,2016; Benthem等,2020)。神经刺激是一种神经调节的方法,涉及将刺激(例如电气,磁性,光学和超声)传递到选定的大脑区域,以调节局部和网络范围内的神经元活性(Yuan等,2020)。经颅磁刺激刺激(TMA)是一种非侵入性工具的创新形式,可以使用低强度集中的超声刺激静态磁场内特定的大脑区域(Yuan and Chen,2016; Wang等,2019)。在2003年,诺顿提出了在静态磁场中使用超声刺激的想法(Norton,2003)。由脑组织内部超声引起的离子颗粒的运动将在静态磁场下形成洛伦兹力,而TMA允许磁性声音电场和超声波的联合作用(Wang等,2016; Yuan等,2016; Yuan等,2016)。值得注意的是,即使在深脑区域,TMA也可以为由于