无线通信技术的飞速发展极大地推动了卫星通信的发展。卫星通信具有信息传输范围广、支持多个接收机同时通信等优势。随着卫星通信技术的不断进步,人们对更高传输速度和更宽频段的需求不断增加,这增加了人们对毫米波频谱中 Ka 波段频率的兴趣。与低频段相比,Ka 波段的数据传输速率更快,而且由于其超高频特性,也易于实现超低延迟。然而,大多数 K/Ka 波段卫星距离地面终端约 35,000 公里,距离和大气条件会导致信号衰减很大。
由于低成本无人机的普及,小型无人机的高爆检测最近已成为一个非常重要的课题,因为这对安全构成了越来越大的潜在风险[1][2]。FMCW 雷达被认为是最适合无人机检测的解决方案之一,因为它结构简单,具有短距离检测能力[1]-[4]。小型无人机的检测是一项具有挑战性的任务,因为它们的尺寸非常有限,并且采用非反射材料,因此雷达截面 (RCS) 非常小。因此,只有利用毫米波频率、高发射功率以及具有低噪声系数 (NF) 和高动态范围的接收器,才能优化雷达检测范围和分辨率。在这种情况下,氮化镓 (GaN) 微波技术代表了性能最佳的解决方案,因为它们为发射器和接收器微波前端提供了最先进的性能系数[4]-[6]。利用微波频率下卓越的 GaN 功率密度,有利于实现紧凑型高功率发射器,以增强无人机目标的弱回波信号(低 RCS)。另一方面,由于兼具低噪声和宽动态范围特性,GaN 技术在 RX 部分也非常有吸引力 [5]-[9]。这一特性对于用于无人机检测的 FMCW 雷达接收器至关重要,因为 LNA 需要检测非常低的无人机回波信号(接近热噪声水平),同时在存在强干扰/阻塞信号的情况下保持其线性度,这些信号通常是由于雷达杂波和其自身发射器功率放大器的泄漏造成的 [3][4]。在本文中,我们描述了一种基于 GaN 的 Ka 波段 MMIC LNA,可用于 FMCW 雷达接收器,用于小型无人机检测。采用 mmW-GaN 技术可以同时瞄准低 NF、高增益和大动态范围,从而在 Ka 波段上方实现无与伦比的综合性能。
“ 4.2 KA事件”是大约4200年前发生的常见的突然气候游览。但是,该事件在区域和较大尺度之间相干的程度尚不清楚。为了客观地评估全新世中的气候游览,我们编译了跨越所有大陆和海洋的古气候数据集,并包括各种档案和代理类型。我们分析这些数据,以确定气候偏移的时机,明显的和空间烙印,使用一种量化局部,区域和全局意义的客观方法。温度和氢化气候中的场地级别游览在整个全新世中都是常见的,但是全球规模的显着偏移很少见。最突出的游览发生在8200年前,当时寒冷和干燥的条件形成了在北大西洋上的较大,重要的游览。我们发现了1600年至1000年前之间的其他显着游览,这与树环数据和年度古气候重建一致,从而为我们的发现增加了信心和背景。相比之下,尽管有些数据集在4200年前显示出显着的气候短途旅行,但它们并未发生在大型连贯的空间区域。因此,与全新世中的大多数其他时期一样,“ 4.2 KA事件”并不是全球重要的气候游览。
2 SR 2 CACU 2薄膜开口,该膜是根据2的极端温度进行的,将BCS-Einstein冷凝物的BCO理论模型研究到理论模型中。 div>跨界温度(τcr)在探索的极限材料(τcr)的2D通量中,地层的相干长度(ξL)。 div>同时,即将接近平均面积的临界温度(TC MF)也取决于温度温度(T C),Ginzburg。 div>关键字:极端变速箱,连贯的Longugu,交叉温度DOI:10.70784 / azip.2.2025111介绍当前,众所周知,它将购买高度关键的多临界游行游行。 div>使用分子束上皮的方法从激光[2]中获得Ste-Ximetric含量[1],陶瓷nisgaqah [2],使用二极管授粉[3],高频脑力甲授粉[4]和高频膜开始使用高频膜。 div>该方法的两种形式的收到的特征是复杂的技术制备,其组件由特殊的化合物组成。 div>最近,发现了两种材料的发现,以及购买薄膜(50-200 mkm)的购买,以及收购50-200 mkm的收购)。 div>他们的购买Techno-logi非常简单,可以轻松获得薄层的胶片。 div>因此,他们的购买不需要由复杂技术制剂和组件的特殊化合物组成。 div>应该在同一时间使用模具方法购买各种极端主义结构。 div>让我们以下面的方式考虑两层-CA-CA-CA-O两层厚层材料。 div>5]这是带有盖章密封方法的BI-SR-CA-O实质性螺旋。 div>Extreme Bi-SR-CA-CA-O for the pliased compositions to get the plyonka, the pie was developed by adding oxalatic compounds and surface active agent to organic solvents. div> 抛光月份的MGO用作基础。 div>Extreme Bi-SR-CA-CA-O for the pliased compositions to get the plyonka, the pie was developed by adding oxalatic compounds and surface active agent to organic solvents. div>基础。 div>
29.高增益 X 波段 SCP.................................................................................................................60 30. X 波段 SCP.................................................................................................................61 31. 样条喇叭天线.................................................................................................................62 32. 波纹喇叭天线.................................................................................................................63 33. C 波段 SAT 馈电网络....................................................................................................64 34. Ku 波段 SAT 滤波器....................................................................................................65 35. X 波段 SAT DRA.............................................................................................................66 36. X 波段 SAT - AM 设计................................................................................................67 37. X 波段 SAT 系统.............................................................................................................68 38. Ku 波段 SAT 系统.............................................................................................................69 39. K/Ka 波段 SAT 系统.............................................................................................................70 40. Q 波段 SAT系统................................................................................................................71 41. QV 波段 SAT 系统..............................................................................................................72 42. E 波段 SAT 系统..............................................................................................................73 地面段系统......................................................................................................................74 43. C 波段系统......................................................................................................................75 44. X 波段系统......................................................................................................................76 45. K/Ka 波段馈电网络.............................................................................................................77 46. X/K/Ka 波段系统.............................................................................................................78 47. DBS / Ka (+跟踪) 系统.............................................................................................................79 发射器天线.............................................................................................................................80 48. 平面和共形天线.............................................................................................................81 定制开发.............................................................................................................................82 雷达技术.............................................................................................................................84 uRAD - 通用雷达 - Anteral 公司出品.............................................................................................85 开源 24 GHz uRAD........................................................................................................86 uRAD 60 GHz 工业级.........................................................................................................................87 uRAD 77 GHz 汽车级.....................................................................................................................88 uRAD 智能交通解决方案.........................................................................................................................89 uRAD 液位传感.........................................................................................................................92 uRAD 智能雷达传感器.........................................................................................................................93
• 用于立方体卫星的微型 Ka 波段大气雷达 (miniKaAR-C) • Ka 波段雷达抛物面可部署天线 (KaRPDA) - 为地球科学提供降水剖面雷达任务 • 角色和职责
2025年1月21日,星期二,上午6:30注册在现场开放6:45-7:05 AM欢迎/在展览馆凯瑟恩·Yashar(Catheryn Yashar)/安德鲁·夏(Andrew Yashar)/安德鲁·夏(Andrew Chang)7:10 - 8:10 am Milestone H&N癌症临床试验:过去,现在,现在,现在,Paul Harari 8:15- 9 :15 AM MENINGIMO:9:19 10:20 AM Cervical Cancer: Immunotherapy, Induction Chemo, and Image Junzo Chino Guided Brachytherapy 10:20 - 10:40 AM Break in Exhibit Hall 10:45 - 11:45 AM Musculoskeletal Disorders Leaving Lytic Lesions: Myeloma and Solitary Plasmacytoma Chirayu Patel 11:50 AM - 12:50 PM Why the Buzz about Upright Patient Positioning for Proton Radiation?保罗·哈拉里(Paul Harari)12:50 pm会议日星期三于2025年1月22日(星期三)6:45 - 7:00 AM在展览厅举行的大陆早餐7:05-8:05 AM子宫癌:分子引导治疗的新时代Junzo Chino 8:10-9:10-9:10-9:10 The Impact of Indigo on Clinical Practice Minesh Mehta 10:15 - 10:35 AM Break in Exhibit Hall 10:40 - 11:40 AM Young at Heart: Radiation Therapy for Mediastinal Lymphoma Chirayu Patel 11:45 AM - 12:45 PM Leadership, Mentorship and Sponsorship in Oncology Paul Harari 12:45 PM Conference Day Completed Thursday, January 23, 2025 6:45 – 7:00 AM展览馆7:05-8:05 AM脑转移酶的大陆早餐:全身治疗与放射疗法Minesh Mehta 8:10-9:10 AM预防和管理Gyn放射疗法的毒性Junzo Chino 9:15-10:10应该考虑哪些脑肿瘤患者?Minesh Mehta 10:10 – 10:15 AM Resident Presentation TBD 10:15 - 10:35 AM Break in Exhibit Hall 10:40 - 11:40 AM The Role of Low Dose Radiation Therapy in treating Benign Tarita Thomas 11:45 AM - 12:45 PM Vulvar Cancer: Sentinel Nodes, Gemcitabine, and IMRT Junzo Chino 12:45 Conference Day Completed Friday, January 24, 2025 6:45 – 7:00 AM Continental Breakfast in Exhibit Hall 7:05 - 8:05 AM From Palliating to Surviving: Peri-Transplant and Peri-CAR T Radiotherapy Chirayu Patel for Relapsed/Refractory B cell Lymphomas 8:10 – 9:10 AM The Outer Orbit: Irradiating the Extranodals Chirayu Patel 9:15AM - 10:15辐射肿瘤学2025和潜在的APM RON DIGIAIMO,TAMARA SYVERSON,CATE小组讨论Yashar,塔里塔·托马斯(Tarita Thomas),塔里塔·托马斯(Tarita Thomas),塔利塔·庞(Tarita Thomas)10:15-10:35上午10:40 AM 10:40 AM -12:40 PM的计费和潜在的AP COMPALTION 20225 QUENTION APM RONSIGEN(PMS COMPARTION 202), Yashar/Andrew Chang
1.3使用培根的沉积物芯的年龄深度模型为沉积物核的年龄至深度模型,我们使用了程序培根,版本2.3.9.1 17在称为R 18的统计软件中安装为包装。对于每个核心,我们执行了两个模型:模型1包括所有或大多数日期(在下面的每种情况下指定),没有先前的假设。在模型2中,我们使用了选项hiatus.depths = 8.2 ka层的下边界和slump = 8.2 ka层的厚度,并在层中发现的丢弃日期可以重新沉积。我们将裂缝深度放在层下方的位置,使沉积物中有间隙或破裂,在层的深度处凹陷,允许给定深度之间的瞬时沉积。培根程序的文档可在(https://chrono.qub.ac.uk/blaauw/manualbacon_2.3.pdf,上一次访问2023/12/06)
• 地球观测应用(EO 程序): – 用于公共卫生和昼夜循环气候变化的高分辨率大气监测 => 紧凑型痕量气体光谱成像、微型激光雷达 – 用于天气预报的全球对流层测量 => GNSS 无线电掩星接收器、微波辐射计、Ka 波段降水雷达 – 用于海洋监测的全球海况和冰层测量 => GNSS 反射测量接收器、Ka 波段雷达测高 – 陆地、洪水、火灾隐患的变化检测 => 多光谱和高光谱光学成像(VIS/SWIR/TIR)、SAR 和 AI 软件