摘要 —TDFA 波段(2 µ m 波段)已被视为下一代光通信和计算的有前途的光学窗口。吸收调制是基本的可重构操作之一,对于大规模光子集成电路至关重要。然而,在 TDFA 波段探索吸收调制的努力很少。在这项工作中,基于绝缘体上硅 (SOI) 平台设计和制造了用于 TDFA 波段波长的可变光衰减器 (VOA)。通过将 200 µ m 的短 PIN 结长度嵌入波导,制造的 VOA 在 2.2 V 时表现出 40.49 dB 的高调制深度,并具有由等离子体色散效应引起的快速响应时间 (10 ns)。结合法布里-珀罗腔效应和硅的等离子体色散效应,衰减器可实现超过 50 dB 的最大衰减。这些结果促进了2μm波段硅光子集成的发展,并有望促进光子衰减器在串扰抑制、光调制和光通道均衡方面的应用。
合成孔径雷达是一种众所周知的技术,用于遥感应用,即使在晚上或在云覆盖面的情况下,具有不间断的成像功能,例如不间断的成像功能。但是,Spaceborne SAR传感器面临着主要挑战,例如成本和规模,这是其适用于对低地球观察应用的未来星座的障碍。SAR传感器不是紧凑的,需要大型或中型卫星,这花费了数亿美元。为了解决这些挑战,最近启动的SpaceBeam项目由欧洲委员会资助,旨在开发一种新颖的SAR扫描方法,利用了混合综合光学波束形成网络(IOBFN)。所提出的光子溶液的紧凑性和频率灵活性符合低地球轨道卫星的未来星座的要求,其重量,重量,功耗和成本(SWAP-C)。
• NanoXplore 开发新一代硬化 FPGA,设计出第一个关键基本块 • 消除 STMicroelectronics Rennes ULTRA300 FPGA 资质认定的风险并提供菊花链。 • Teledyne-E2V 的 QLX2160 处理器模块和 DDR4-16GB 内存的设计和验证 • Microchip 的 Rad-Tol 版本基于 ARM 处理器的 PIC32CZ 微控制器的认证 • Teledyne-E2V 的 EV10AS940 Ka 波段转换器的重新设计 • STMicroelectronics 的 SiC 技术中的 Rad-Hard 肖特基二极管的开发和强化 • 创建经辐射认证的 COTS 服务产品,特别满足 NewSpace 玩家的需求。
抽象目标早期发展评估对于有效的支持和干预至关重要。这项研究检查了有助于(a)年龄较大的儿童时的因素,当时护理人员首先关心孩子的成长,以及(b)在进入发育和诊断评估的年龄较大的孩子时代。我们还量化了因素如何导致儿童未通过5年接受评估的风险,并考虑了对家庭的电子数据捕获的可接受性。设计这项横断面研究收集了有关护理人员发育问题,家族史和儿童特征的信息。设置儿童和家庭进入了一项大型,由公共资助的基于医院的儿科发育评估服务。参与者连续入学的儿童(n = 916),年龄在6个月至17岁之间,有神经发育问题及其护理人员。主要结果和衡量护理人员完成的发展历史问卷。结果护理人员确定发育问题的平均年龄为3.0岁,但接受发育评估的平均年龄为6.6岁。,只有46.4%的儿童在5岁之前接受了诊断评估,尽管有88.0%的护理人员关心到该年龄的孩子的成长。父母的年龄,关系状况,教育水平,事先使用支持服务以及来自文化和语言多样性的背景,在确定关注时,诊断评估的年龄以及在5年之前接受诊断评估的可能性有助于年龄。电子数据捕获具有很高的可接受性,其中88.2%的看护人报告了对问卷的电子完成的偏爱。结论这项研究表明,诊断评估的延迟很大,这使最脆弱的儿童在没有学龄前年龄的情况下进行评估,并突出了延迟的贡献者。这些延迟突出了提供早期干预和支持的复杂性
rydberg原子可以用作数字和模拟信息传输的原子射频接收器。在本文中,在室温剖宫产原子蒸气电池中制备了梯子型电磁诱导的透明度系统。以12.52 GHz的频率和39.80 GHz的KA频段的微波电场用作两通道通信载体,以证明并发信息传输。模拟和数字通信。提出的系统的动态范围约为50 dB,通信带宽超过10 MHz。获得的结果证明了基于不同rydberg最终状态的两种或多波段通信系统的基本原理。
SpaceX 正在利用其在空间系统制造、设计和运营方面积累的专业知识来开发 Starlink,这是一个卫星星座,旨在为新西兰和全球任何地方提供高速、低延迟、价格具有竞争力的宽带服务。SpaceX 的第一代星座由 4,400 多颗非地球静止轨道 (NGSO) 卫星和采用先进通信和空间运营技术的广泛地面基础设施组成。SpaceX 已在该系统上投资了数十亿美元,目前平均每月发射 120 颗卫星,同时建造网关和最终用户终端天线。Starlink 旨在通过优化其与其他授权卫星和地面用户灵活共享频谱的能力来高效利用无线电频谱资源,包括通过先进的波束成形和数字处理技术。SpaceX 目前将卫星连接到 Ku 波段的客户用户终端,用于上行链路和下行链路频率,网关链路位于 Ka 波段。
该公司拥有最全面的雷达产品组合之一,涵盖 ka 波段、X 波段、C 波段和 L 波段。广泛的产品组合意味着客户可以找到完美适用于特定应用的雷达,无论是导航、空中和水面监视、跟踪还是超视距扫描。凭借其多功能能力,该系列雷达可以满足最苛刻的要求。对于沿海监视,SPS-732 在 X 波段运行,范围超过 180 公里。这种 2D 多用途雷达可以安装在中小型水面战斗舰艇上,以履行各种作战职责。凭借其新功能,包括连续变焦、LPI 能力和 ISAR 分析,它目前是水面监视雷达的最新技术。对于 400 总吨及以上的水面战斗舰艇,可以在船上安装 KRONOS® NAVAL HP。 KRONOS NAVAL HP 采用 C 波段有源电子扫描阵列 (AESA) 技术,是市场上唯一一款天线组重量不到 1000 公斤的多功能雷达。KRONOS NAVAL High Power 能够提供更高的测距性能。同样属于 KRONOS 系列的 KRONOS® GRAND NAVAL 是一款多功能 AESA 雷达,是重型水面战舰主要防空导弹系统的主要资产。KRONOS GRAND NAVAL 的应用包括扩展自卫和区域保护、空中和海上监视、多目标跟踪、体积搜索和多枚主动导弹制导。在预警方面,L 波段多功能全数字 AESA 雷达 KRONOS® POWERSHIELD 的探测范围可达 1500 公里。它可以为水面战舰提供增强的反战术弹道导弹 (ATBM) 能力,最高预警能力可达 TBM600 和 TBM1300。莱昂纳多公司生产的最新、功能更强大的多任务多功能雷达是 KRONOS® DBR(双波段雷达)。它是一种性能顶级的固定面 C 波段和 X 波段解决方案,不仅能够提供标准的 AESA 3D 空中和地面监视和跟踪,还能提供针对 TBM600 目标的 ATBM 功能、导弹制导、上行链路和火控系统功能。SIR-M 系列雷达从简单的紧凑型到复杂的架构,可以集成旋转或固定面/保形天线,是市场上最全面的 IFF 解决方案,再加上莱昂纳多 IFF 转发器和最高可达模式 5 和 S 的询问器。PAR720 是最常用的精密进近雷达之一,安装在意大利和出口的航空母舰上。
国际教育技术杂志(IJTE)是经过同行评审的学术在线杂志。本文可用于研究,教学和私人学习目的。作者仅负责其文章内容。期刊拥有文章的版权。出版商不应对直接或间接导致或因使用研究材料而直接或间接引起的任何损失,诉讼,诉讼,需求或损害或损害或损害。所有作者都被要求披露任何实际或潜在的利益冲突,包括与其他人或组织有关提交工作的任何财务,个人或其他关系。
• AESA 雷达 • 电信 • 仪器仪表 描述 CGY2170YHV/C1 是一款在 X 波段工作的高性能 GaAs MMIC T/R 6 位核心芯片。该产品有三个 RF 端口,包括三个开关、一个 6 位移相器、一个 6 位衰减器和放大器。它的移相范围为 360°,增益设置范围为 31.5 dB。移相器和第一放大器级之间还有一个电压可变衰减器,用于增益控制。它覆盖的频率范围为 8 至 12 GHz,并在 10 GHz 时提供 5.8 dB 的增益。带有串行输入寄存器的片上控制逻辑最大限度地减少了控制线的数量,并大大简化了该设备的控制接口。该芯片采用 0.18 µm 栅极长度 ED02AH pHEMT 技术制造。 MMIC 采用金焊盘和背面金属化,并采用氮化硅钝化进行全面保护,以获得最高水平的可靠性。该技术已针对太空应用进行了评估,并被列入欧洲航天局的欧洲首选部件清单。
能够同时在两个波段成像的双波段红外 (IR) 焦平面阵列 (FPA) 探测器在过去十年中已经发展成熟 [1]–[5]。由于物体和背景的热特征与波长有关,因此理论上该技术可用于提高各种重要应用中的目标检测、跟踪和杂波抑制性能 [6]–[8]。例如,在短波红外 (SWIR) 和中波红外 (MWIR) 波段以及 MWIR 和长波红外 (LWIR) 波段工作的双波段传感器已用于地对空导弹导引头以抵抗干扰弹等干扰 [9], [10]。MWIR/LWIR 传感器目前用于舰载红外搜索和跟踪 (IRST) [11], [12],MWIR/MWIR 传感器已用于防止飞机导弹预警接收器的误报 [13]–[15]。在一些国家,陆军、海军和空军在 8-12 µm LWIR 波段和 3-5 µm MWIR 波段的双波段传感器的开发方面投入了大量资金。这些波段具有几个重要差异。排气口和发动机羽流等热物体在 MWIR 中更为明显 [7]、[10]、[16],而机身、机身和导弹硬体在 LWIR 中更为明显 [7]、[10]。水蒸气吸收在 LWIR 中占主导地位,而二氧化碳吸收在