摘要 已获许可药物组成的药物库代表了调节人类生理过程的大量分子,为发现针对宿主的抗病毒药物提供了独特的机会。我们筛选了包含约 12,000 个分子的 Repurposing、Focused Rescue 和 Accelerated Medchem (ReFRAME) 药物库,以寻找广谱冠状病毒抗病毒药物,并发现了 134 种抑制 α 冠状病毒的化合物,并映射到 58 个分子靶标类别。主要靶标包括 5-羟色胺受体、多巴胺受体和细胞周期蛋白依赖性激酶。敲除这些药物的宿主靶标,包括组织蛋白酶 B 和 L(CTSB/L;VBY-825)、芳烃受体(AHR;Phortress)、法呢基二磷酸法呢基转移酶 1(FDFT1;P-3622)和 kelch 样 ECH 相关蛋白 1(KEAP1;Omaveloxolone),显著调节了 HCoV-229E 感染,证明这些化合物通过作用于各自的宿主靶标来抑制病毒。对所有 134 种主要化合物候选物与 SARS-CoV-2 进行反向筛选,并在原代细胞中进行验证,确定了 Phortress(一种 AHR 激活配体)、P-3622 靶向 FDFT1 和 Omaveloxolone(一种通过将 NFE2 样 bZIP 转录因子 2 (NFE2L2) 从其内源性抑制剂 KEAP1 中释放出来而激活 NFE2 样 bZIP 转录因子 2 (NFE2L2))作为 Alpha 和 Betacor 病毒的抗病毒候选物。本研究概述了 HCoV-229E 重新利用候选物,并揭示了被各种冠状病毒劫持的新型潜在可用药病毒宿主依赖因子。
由许可药物组成的摘要图书馆代表了调节人类生理过程的大量分子曲目,为发现宿主靶向抗病人提供了独特的机会。我们筛选了重新利用,集中救援和加速的Medchem(倒置),以大约12,000个分子重新使用库,用于宽光谱冠状病毒抗病毒药,发现了134种化合物,抑制了αOronavirus并映射到58个分子靶标。主要的靶标包括5-羟基氨基胺受体,多巴胺受体和细胞周期蛋白依赖性激酶。Gene knock-out of the drugs' host targets including cathepsin B and L (CTSB/L; VBY-825), the aryl hydrocarbon receptor (AHR; Phortress), the farnesyl-diphosphate farnesyltransferase 1 (FDFT1; P-3622), and the kelch-like ECH-associated protein 1 (KEAP1; Omaveloxolone), significantly调节HCOV-229E感染,提供了证据表明这些化合物通过对各自的宿主靶标的作用抑制了病毒。对所有134个主要的化合物进行SARS-COV-2和验证的对识别的原始细胞的验证,AHR激活配体,P-3622靶向FDFT1和OmavelOxolone,以及Omaveloxolone,该a和Omaveloxolone激活NFE2样的BZIP转录因子2(nFe2L2),该nfe 2(nFe2L2)的kap kap and and and and and and and and and and and and them keap kap keap,kap and and and and and and and and the trib kap, alpha-和betacor onavirus。 这项研究提供了HCOV-229E重新利用候选者的概述,并揭示了被不同冠状病毒劫持的新型潜在可吸毒的病毒宿主依赖性因素。对识别的原始细胞的验证,AHR激活配体,P-3622靶向FDFT1和OmavelOxolone,以及Omaveloxolone,该a和Omaveloxolone激活NFE2样的BZIP转录因子2(nFe2L2),该nfe 2(nFe2L2)的kap kap and and and and and and and and and and and and them keap kap keap,kap and and and and and and and and the trib kap, alpha-和betacor onavirus。这项研究提供了HCOV-229E重新利用候选者的概述,并揭示了被不同冠状病毒劫持的新型潜在可吸毒的病毒宿主依赖性因素。
小胶质细胞神经蛋白浮肿在早期病理阶段似乎是神经保护作用的,但神经毒性通常是在阿尔茨海默氏病(AD)的神经变性之前进行的。然而,由于复杂的神经元-GLIA相互作用,小胶质细胞活性在AD进展过程中如何转移到神经毒性状态。在这里,探索了探索3D人类AD小脑,AD患者的脑组织和5XFAD小鼠的AD中有害小胶质细胞增多的机制。在人类和动物AD模型中,淀粉样蛋白β(A 𝜷)过表达的神经元和反应性星形胶质细胞产生干扰素 - γ(IFN𝜸)和过度的氧化应激。IFN𝜸会导致有丝分裂原激活的蛋白激酶(MAPK)的下调以及在微胶质细胞中kelch样ECH样蛋白1(KEAP1)的上调,这些蛋白1(KEAP1)失活核因子红细胞因子 - 红细胞 - 核酸2(NRF2)和敏感性因素和敏感性敏感性和敏感性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性作用。 kappa b(nf𝜿B) - 轴。 促进弹性小胶质细胞反过来会产生神经毒性一氧化氮和促进弹性介体加剧突触障碍,磷酸化的TAU积累和可分辨的神经元丧失。 有趣的是,在小胶质细胞中恢复NRF2可防止促进性小胶质细胞的激活,并且显着阻止了Ad Minibrain的Tauopathy。 综上所述,可以预见,小胶质细胞中IFN 𝜸驱动的NRF2下调是改善AD病理学的关键靶标。IFN𝜸会导致有丝分裂原激活的蛋白激酶(MAPK)的下调以及在微胶质细胞中kelch样ECH样蛋白1(KEAP1)的上调,这些蛋白1(KEAP1)失活核因子红细胞因子 - 红细胞 - 核酸2(NRF2)和敏感性因素和敏感性敏感性和敏感性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性侵蚀性作用。 kappa b(nf𝜿B) - 轴。促进弹性小胶质细胞反过来会产生神经毒性一氧化氮和促进弹性介体加剧突触障碍,磷酸化的TAU积累和可分辨的神经元丧失。有趣的是,在小胶质细胞中恢复NRF2可防止促进性小胶质细胞的激活,并且显着阻止了Ad Minibrain的Tauopathy。综上所述,可以预见,小胶质细胞中IFN 𝜸驱动的NRF2下调是改善AD病理学的关键靶标。
自噬是一种分解代谢过程,在整个进化过程中一直被保留,用于降解和回收细胞成分和受损细胞器。自噬在各种应激条件下被激活,例如营养缺乏、病毒感染和基因毒性应激,并与其他应激反应途径协同作用,以减轻氧化损伤并维持细胞稳态。其中一种途径是 Nrf2-Keap1-ARE 信号轴,它作为一种内在的抗氧化防御机制,与癌症化学预防、肿瘤进展和耐药性有关。最近的研究发现了自噬受损(由自噬受体蛋白 p62 介导)与 Nrf2 通路激活之间的联系。具体而言,p62 通过选择性自噬促进 Keap1 降解,导致 Nrf2 易位到细胞核中,在那里它转录激活下游抗氧化酶表达,从而保护细胞免受氧化应激。此外,Nrf2 还调控 p62 的转录,从而建立起 p62、Keap1 和 Nrf2 之间的正反馈回路,增强对细胞的保护作用。本文旨在全面综述 Nrf2 和自噬在癌症进展中的作用、Nrf2 通路与自噬之间的调控相互作用以及 Nrf2-自噬信号轴在癌症治疗中的潜在应用。
实体肿瘤的表达谱。由于 LUAD 在我们的队列中占主导地位(> 80%),我们将 PDC 基因表达谱与 TCGA-LUAD 数据集(n = 230)进行了比较。正如预期的那样,PDC 基因组图谱与肿瘤样本相似,并与正常邻近组织区分开来(图 1B)[36]。PDC 和 TCGA 样本中的组成性体细胞基因突变相似。TP53、RB1 和 BRAF 突变的复发在 PDC 和 TCGA 样本中都得到了高度保留。PDC 中的 EGFR 突变频率较高,而 KRAS、KEAP1 和 STK11 突变的复发低于 TCGA 样本(图 1B)。因此,在 PDC 模型中经常观察到 TP53(49%)、EGFR(31%)和 RB1(8%)的体细胞突变(图 1C)。此外,MET (10%)、CDK4 (6%)、
E3 连接酶是一类异质性蛋白质,其生物学复杂且了解甚少,组织表达和活性也各不相同。它们被归类为 HECT(与 E6 相关蛋白 C 端同源)、RING(真正有趣的新基因)或 U-box 蛋白。这三类蛋白在泛素转移机制和蛋白质复合物组成方面有所不同 (8)。由于化学物质的可用性较差,TPD 招募新型 E3 也受到限制。尽管如此,最近的研究表明,几种新型 E3 与 PROTAC 和 MGD 具有活性,包括 DCAF15、DCAF16、KEAP1、RNF4、HERC4 (6,7),而且该领域正在迅速扩大。E3 连接酶的异常表达和活性通常是癌细胞的特征 (3,5,4),可用于治疗以产生癌症或组织选择性降解剂。
摘要:具有较大,无特征和高度亲脂性或高度极性和/或可透明的结合位点的繁殖靶标的潜在客户产生的产物是高度挑战性的。在这里,我们描述了大环天然产物的核心如何在计算机筛选文库中充当高质量的核心,该库为繁殖力范围的目标提供了潜在客户。一组经过精心选择的自然产物衍生的核心的两个迭代回合,导致发现了KEAP1-NRF2蛋白 - 蛋白质 - 蛋白质相互作用的未充电的大环抑制剂,这是由于其高极极性结合位点,这是一个特别具有挑战性的靶标。抑制剂显示出细胞的效率,并且基于其与Keap1和合成通道的络合物结构进行了良好的优化。我们认为,我们的工作将激发利用在基于计算机的潜在客户生成中使用大环核的兴趣,并激发未来大环筛查集合的设计。■简介
肝细胞癌 (HCC) 是最常见的原发性肝癌,其发病率持续增长,是一个严重的医学问题。HCC 的发展是一个复杂的多步骤过程,最终会导致炎症损害、肝细胞坏死/再生和纤维化沉积 [1]。然而,HCC 的化疗治疗有局限性。目前用于一线全身治疗的药物,如索拉非尼和仑伐替尼,只能延长患者生存期几个月,主要是因为对这些疗法产生了耐药性 [2]。先前的研究报道了导致索拉非尼耐药 HCC 的潜在机制 [3]。核受体结合蛋白 2 (NRBP2) 可能通过影响 Bcl2 和 Akt 通路中存活蛋白的表达来增加 HCC 细胞化疗耐药性 [4]。组蛋白去甲基化酶赖氨酸特异性去甲基化酶 1 (KDM1A) 可通过激活 Wnt 信号增加 β -catenin 通路,从而降低 HCC 的治疗敏感性 [5]。此外,KRAS 通路加速 RAF/ERK 和 PI3K/AKT 信号传导,导致索拉非尼耐药 HCC 细胞增殖增加、凋亡抑制 [6]。多项研究表明,癌症干细胞 (CSC) 在癌症复发和对分子靶向疗法的主要耐药性中起着重要作用。最近的研究表明,具有干细胞样特征的 HCC 细胞,例如表达 CSC 表面标志 CD44、EpCAM、CD133 和 CD90,对索拉非尼诱导的细胞死亡表现出抗性 [7]。然而,索拉非尼耐药细胞获得癌症干性的机制仍不清楚 [8]。核因子红细胞衍生2样2 (Nrf2) 信号异常常见于多种癌症,包括 HCC,并参与肿瘤发生、肿瘤进展和化疗耐药性[9]。Nrf2 有助于维持氧化应激平衡,并可通过激活多种抗氧化基因的转录促进癌细胞在外来化合物毒素下的存活。Keap1/Nrf2 通路被认为是调节细胞防御氧化应激的主要信号级联。此外,Nrf2 通过驱动巨噬细胞极化为 M2 表型并促进癌细胞迁移来影响肿瘤微环境[10]。正常情况下,Keap1 在细胞质中分离并结合 Nrf2,导致蛋白酶体介导的下游基因降解[11]。在某些情况下,Nrf2 从 Keap1 中释放出来并转移到细胞核中,从而激活 ARE 介导的解毒酶基因表达,包括 HO-1 [ 12 ]。HO-1 参与调节 NRF2 靶向的 ATP 结合盒 (ABC) 外排转运体 (ABCC1、ABCG2 等) [ 13 ]。此外,Nrf2 诱导糖酵解基因的表达,并参与对癌细胞干细胞特性很重要的基因的转录调控,从而促进恶性肿瘤的发生 [14]。Nrf2 信号转导的阴暗面在癌症干细胞中也有描述。激活的 Nrf2 可减少 ROS 的产生并对药物产生抵抗性 [15]。作为转录因子,Nrf2 通过基因编辑技术促进了癌症干细胞的肿瘤生成 [16]。在本研究中,我们研究了肝癌细胞对索拉非尼耐药的机制,重点研究了 Nrf2 信号通路。我们检查了索拉非尼耐药的肝癌细胞
原发性癌细胞的临床前研究通常是在从环境大气中的患者或动物中去除肿瘤后进行的(O 2,21%)。然而,器官中的O 2浓度在〜3至10%的范围内,大多数肿瘤在体内的低氧或1%至2%O 2环境中。尽管已经研究了O 2张力对体外肿瘤细胞特征的影响,但仅在首先收集肿瘤并在环境空气中处理肿瘤后才进行这些研究。同样,在环境o 2上常规检查了原代癌细胞对抗癌剂的敏感性。在这里,我们证明了在生理学O 2上收集,处理和传播的肿瘤与环境空气散发在关键信号网络中的明显差异,包括LGR5/WNT,YAP和NRF2/KEAP1,核电反应性氧,替代性拼接以及对靶标的therapies的敏感性。因此,在体内微环境中评估生理毒素下的癌细胞可以更紧密地概括其生理病理学状态。
除了已知的 ESR1 热点突变外,我们还观察到转移性富集了以前未报告的、配体结合结构域中较低流行率的突变,这意味着这些突变也可能具有功能性。此外,单个 ESR1 热点在特定的转移组织和组织学中显著富集,表明这些突变之间存在功能差异。所有转移瘤中富集的其他改变包括 CDK4 调节因子 CDKN1B 的功能丧失和转录因子 CTCF 的突变。在特定转移部位富集的突变通常反映靶组织的生物学,可能是对局部环境生长的适应。这些包括脑转移瘤中的 PTEN 和 ASXL1 改变以及皮肤中的 NOTCH1 改变。我们观察到肺转移瘤中 KRAS 、 KEAP1 、STK11 和 EGFR 突变的富集。然而,这些肿瘤中其他突变的模式表明,这些是被误诊的肺原发性肿瘤而不是乳腺转移瘤。
