摘要肺癌的发生依赖于细胞内的半胱氨酸来克服氧化应激。包括非小细胞肺癌 (NSCLC) 在内的几种肿瘤类型通过过表达胱氨酸转运蛋白 SLC7A11 上调 xc - 胱氨酸/谷氨酸反向转运蛋白 (xCT) 系统,从而维持细胞内半胱氨酸水平以支持谷胱甘肽合成。核因子红细胞 2 相关因子 2 (NRF2) 通过调节 SLC7A11 充当氧化应激抵抗的主要调节器,而 Kelch 样 ECH 相关蛋白 (KEAP1) 充当氧化反应转录因子 NRF2 的细胞质抑制因子。KEAP1/NRF2 和 p53 的突变会诱导 NSCLC 中的 SLC7A11 激活。细胞外胱氨酸对于提供对抗氧化应激所需的细胞内半胱氨酸水平至关重要。胱氨酸可用性中断会导致铁依赖性脂质过氧化,从而导致一种称为铁死亡的细胞死亡。xCT 的药理抑制剂(SLC7A11 或 GPX4)会诱导 NSCLC 细胞和其他肿瘤类型的铁死亡。当胱氨酸摄取受损时,细胞内的半胱氨酸池可以通过转硫途径维持,该途径由胱硫醚-B-合酶 (CBS) 和胱硫醚 g-裂解酶 (CSE) 催化。外源性半胱氨酸/胱氨酸和转硫途径参与半胱氨酸池和下游代谢物会导致 CD8 + T 细胞功能受损和免疫疗法逃避,从而削弱免疫反应并可能降低免疫治疗干预的有效性。细胞焦亡是一种以前未被认识的受调节细胞死亡形式。在由 EGFR、ALK 或 KRAS 驱动的 NSCLC 中,选择性抑制剂可诱导细胞焦亡和凋亡。靶向治疗后,线粒体内在凋亡途径被激活,从而导致 caspase-3 的裂解和活化。因此,gasdermin E 被激活,从而导致细胞质膜通透化和细胞溶解性焦亡(以特征性细胞膜膨胀为标志)。本文还讨论了 KRAS G12C 等位基因特异性抑制剂的突破和潜在的耐药机制。关键词溶质载体家族 7 成员 11 (SLC7A11);核因子红细胞 2 相关因子 2 (NRF2);铁死亡;焦亡;KRAS G12C 等位基因特异性抑制剂;非小细胞肺癌 (NSCLC)
全基因组CRISPR/Cas9筛选是一种在特定条件下定位位点的简便筛选方法,已被用于肿瘤耐药研究中寻找潜在的耐药相关基因,对进一步治疗获得性耐药的恶性肿瘤具有重要意义。近年来,涉及全基因组CRISPR/Cas9筛选的研究逐渐增多。本文综述了近年来全基因组CRISPR/Cas9筛选在药物耐药中的应用,涉及丝裂原活化蛋白激酶(MAPK)通路抑制剂、聚(ADP-核糖)聚合酶抑制剂(PARPi)、烷化剂、有丝分裂抑制剂、抗代谢物、免疫检查点抑制剂(ICI)和细胞周期蛋白依赖性蛋白激酶抑制剂(CDKI)。总结了KEAP1/Nrf2通路、MAPK通路、NF-κB通路等耐药通路,并分析了全基因组CRISPR/Cas9筛选技术的应用限制和条件。
非小细胞肺癌(NSCLC)的高发病率和死亡率一直是威胁人民健康的重大威胁。随着非小细胞肺癌致癌驱动因素的识别和靶向药物的临床应用,非小细胞肺癌患者的预后大大改善。然而,在大量非小细胞肺癌病例中,致癌驱动因素是未知的。识别基因改变对于NSCLC的有效个体化治疗至关重要。此外,靶向药物难以在临床上应用,癌症药物耐药性是限制靶向药物疗效和应用不可避免的障碍。本综述介绍了靶向药物耐药机制和新发现的非小细胞肺癌靶点(例如 KRAS G12C、NGR、DDR、CLIP1-LTK、PELP1、STK11/LKB1、NFE2L2/KEAP1、RICTOR、PTEN、RASGRF1、LINE-1 和 SphK1)。对这些机制和靶点的研究将推动非小细胞肺癌的个体化治疗,以产生更好的结果。
甲基-CPG结合蛋白2(MECP2)基因中的抽象灭活突变是RETT综合征(RTT)的主要原因。尽管对MECP2功能进行了广泛的研究,但目前尚无RTT治疗。在这里,我们使用进化基因组学方法来构建无偏的MECP2基因网络,使用1028个真核基因组来优先使用具有MECP2的强共核心特征的蛋白质。专注于由FDA批准的药物靶向的蛋白质,导致了三个有希望的靶标,其中两个以前与MECP2功能(IRAK,KEAP1)相关,一种不是(EPOR)。针对这三种蛋白质(parcitinib,dmf和epo)的药物能够在培养的人类神经细胞类型中挽救MECP2失活的不同表型,并且似乎在炎症中会汇聚在核因子KAPPA B(NF-K B)上。这项研究强调了比较基因组学加速药物发现的潜力,并为RTT的治疗带来了潜在的新途径。
ABL1、ABL2、AKT1、ALK、APC、AR、ARAF、ARID1A、ARID1B、ATM、ATR、ATRX、BAP1、BARD1、BRAF、BRCA1、BRCA2、BRIP1、C11orf65、CCND1、CDH1、CDK12、CDK4、CDKN2A、CDX2、CHEK1、CHEK2、CSF1R、CTNNB1、DDR2、EGFR、ERBB2、ERBB3、ERBB4、ERCC2、ESR1、EZH2、FANCL、FBXW7、FGFR1、FGFR2、FGFR3、FGFR4、FLT3、FOXA1、FOXL2、GATA3、GNA11、GNAQ、GNAS、HNF1A、HRAS、IDH1、IDH2、INPP4B、 JAK1、JAK2、JAK3、KDM5C、KDM6A、KEAP1、KIT、KRAS、MAP2K1、MAP2K2、MAPK1、MET(外显子 14 跳跃)突变)、MLH1、MPL、MSH2、MSH6、MTOR、MUTYH、MYC、MYCN、MYD88、NF1、NF2、NOTCH1、NPM1、NRAS、NTRK1、NTRK3、PALB2、PBRM1、PDGFRA、PIK3CA、PMS2、POLD1、POLE、PPP2R2A、PTCH1、PTEN、PTPN11、RAD51B、RAD51C、RAD51D、RAD54L、RAF1、RB1、RET、RHEB、RHOA、RIT1、ROS1、SETD2、SF3B1、 SMAD4、SMARCB1、SMO、SPOP、SRC、STK11、TERT、TP53、TSC1、TSC2、VHL
摘要:神经退行性疾病的发作涉及病理机制的复杂相互作用,包括蛋白质聚集,氧化应激和自噬受损。本综述着重于神经退行性疾病中氧化应激与自噬之间的复杂联系,突出了自噬作为疾病发病机理的关键。活性氧(ROS)在细胞稳态和自噬调节中起双重作用,并破坏了氧化还原信号导致神经变性的氧化物。NRF2途径的激活代表了一种关键的抗氧化剂机制,而自噬通过降解改变的细胞成分来保持细胞稳态。p62/SQSTM1,NRF2和KEAP1之间的相互作用是细胞应激反应必不可少的调节途径,其失调会导致自噬和骨料积累受损。靶向NRF2 -P62/SQSTM1途径有望治疗干预,减轻氧化应激和保留细胞功能。此外,本综述探讨了内源性大麻素系统与NRF2信号传导的潜在协同作用。需要进一步的研究来阐明所涉及的分子机制并制定针对神经变性的有效治疗策略。
耐药性是癌症治疗中最大的挑战之一,限制了治愈患者的潜力。在许多肿瘤中,蛋白质 NRF2 的持续激活使肿瘤细胞对化疗和放疗产生耐药性。因此,阻断癌症中不适当的 NRF2 活性已被证明可以降低疾病模型中的耐药性。人们对 NRF2 抑制剂的科学兴趣日益浓厚。然而,迄今为止开发的化合物并非靶向特异性的,并且具有高度毒性,阻碍了临床应用。能够增强 NRF2 与其泛素化促进调节蛋白(KEAP1 或 β -TrCP)结合的化合物有可能增加 NRF2 降解,并可能作为癌症治疗中的潜在化学增敏剂。基于分子胶型机制的方法,其中配体稳定蛋白质与其结合伙伴之间的三元复合物,已证明可通过稳定其与 β -TrCP 的相互作用来增强 β -catenin 降解。该策略可用于合理发现降解性 β -TrCP-NRF2 和 KEAP1-NRF2 蛋白质-蛋白质相互作用增强剂。我们提出了一种选择性抑制肿瘤中 NRF2 活性的新方法。该方法基于最新方法,有可能成为抗癌药物库中一个有前途的新成员。
在包括 NSCLC 在内的所有肿瘤类型中,约 98% 的致癌 RAS 突变发生在 Switch I 的 G12 或 G13 密码子上,或 Switch II 区域的 Q61 密码子上。24 这些突变的获得导致 KRAS 活性改变,从而维持不受控制的 KRAS 信号网络并促进肿瘤形成和进展(图 1A、B)。KRAS 中的 G12 突变是最常见的突变,占肺癌中所有 KRAS 突变的近 90%,其次是密码子 13 和 61 的突变。24 新兴证据表明,不同的 KRAS 异构体在临床特征、并发基因组变异和基因表达谱方面高度异质,凸显了不同 KRAS 突变体潜在的异构体依赖性治疗脆弱性。 16 KRAS G12C 突变与烟草暴露密切相关,据报道,与其他 KRAS 亚型和 KRAS 野生型 NSCLC 相比,KRAS G12C 突变具有更高的肿瘤突变负担和较高的基因同时突变率,例如 STK11 、 KEAP1 、 SMARCA4 和 ATM 。16,17 此外,具有 KRAS G12C 突变的 NSCLC 倾向于上调免疫逃逸标志物,例如 PD-L1 和 PD-L2,从而部分解释了在该患者群体中观察到的对 ICI 的敏感性增加。16,25
摘要:脂质代谢失调是肝癌的共同特征,维持肿瘤细胞生长和存活必不可少。我们旨在利用这一弱点,通过靶向关键代谢因子前蛋白转化酶枯草溶菌素/kexin 9 型 (PCSK9) 来重新连接致癌代谢中心。我们使用三种肝癌细胞系 Huh6、Huh7 和 HepG2 评估了 PCSK9 抑制的效果,并使用斑马鱼体内模型验证了结果。PCSK9 缺乏导致所有细胞系的细胞增殖受到强烈抑制。在脂质代谢水平上,PCSK9 抑制导致细胞内中性脂质、磷脂和多不饱和脂肪酸增加以及脂质氢过氧化物积累增加。分子信号分析涉及 sequestome 1/Kelch 样 ECH 相关蛋白 1/核因子红细胞 2 相关因子 2 (p62/Keap1/Nrf2) 抗氧化轴的破坏,导致铁死亡,其形态特征通过电子和共聚焦显微镜得到确认。使用斑马鱼异种移植实验验证了 PCSK9 缺乏的抗肿瘤作用。抑制 PCSK9 可有效破坏肿瘤代谢过程,诱导代谢衰竭并增强癌细胞对铁触发脂质过氧化的脆弱性。我们提供了强有力的证据支持抗 PCSK9 方法的药物重新定位以治疗肝癌。
核因子红细胞 2 相关因子 2 (Nrf2) 是一种调节氧化还原稳态的转录因子,在细胞增殖和存活等多种细胞过程中起着关键作用,并且已发现在许多癌症中异常激活。作为关键致癌基因之一,Nrf2 是癌症治疗的重要治疗靶点。研究已经揭示了 Nrf2 通路调控的主要机制以及 Nrf2 在促进肿瘤发生中的作用。人们已经付出了很多努力来开发有效的 Nrf2 抑制剂,并且正在对其中一些抑制剂进行多项临床试验。天然产物被公认为开发新型癌症疗法的宝贵来源。到目前为止,已鉴定出多种天然化合物作为 Nrf2 抑制剂,如芹菜素、木犀草素和包括鸦胆子醇和鸦胆子素 D 在内的类鸦胆子素化合物。这些 Nrf2 抑制剂被发现可介导氧化反应,并在不同类型的人类癌症中表现出治疗作用。在本文中,我们回顾了 Nrf2/Keap1 系统的结构和功能以及天然 Nrf2 抑制剂的开发,重点介绍了它们对癌症的生物学功能。我们还总结了 Nrf2 作为癌症治疗潜在治疗靶点的现状。希望这篇综述能够促进对天然 Nrf2 抑制剂作为癌症治疗候选药物的研究。
