获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
摘要 — 社交媒体为真正互联的世界创造了机会,改变了人们沟通、交换思想和组织虚拟社区的方式。了解在线行为和处理在线内容对于安全应用都具有战略重要性。然而,大量、嘈杂的数据和主题的快速变化带来了挑战,阻碍了分类模型的有效性和语义模型的相关性。本文对用于分析社交数据流的监督、非监督和语义驱动方法进行了比较分析。本文的目标是确定实证研究结果是否支持增强决策支持和模式识别应用。本文报告了使用各种方法来识别社交数据集合中隐藏模式的研究,其中文本高度非结构化,带有多种模态,并且可能具有不正确的时空标记。结论报告指出,在挖掘社交媒体数据时,机器学习模型和语义驱动方法的脱节使用存在一些弱点。索引词 — 社交网络、混合人工智能、国防和安全