了解电子 - 波相互作用在根本上很重要,并且对设备应用具有至关重要的影响。但是,在魔法角度附近的扭曲的双层石墨烯中,目前缺乏这种理解。在这里,我们使用时间和频率分辨的光电压测量方法研究电子音波耦合,作为声子介导的热电子冷却的直接和互补探针。我们发现在魔术角靠近扭曲的双层石墨烯的冷却时,我们发现了一个显着的加速:冷却时间是从室温下降到5 kelvin的几次picseconds,而在原始的双层石墨烯中,在较低温度下,冷却到声子变为较慢。我们的实验和理论分析表明,这种超快冷却是超晶格形成的组合作用,具有低功能的Moiré声子,空间压缩的电子Wannier轨道以及降低的超晶格Brillouin区域。这可以实现有效的电子 - phonon umklapp散射,从而克服了电子 - phonon动量不匹配。这些结果将扭转角建立为控制能量放松和电子热流的有效方法。
富兰克林·米勒是威斯康星大学麦迪逊分校机械工程系副教授。在加入该大学任教之前,米勒教授曾在 NASA 戈达德太空飞行中心的低温工程部门工作。在 NASA 任职期间,他致力于开发用于太空飞行任务的冷却系统,包括詹姆斯·韦伯太空望远镜上运行的系统。米勒教授拥有麻省理工学院机械工程博士学位和物理学辅修学位。他的博士研究工作包括模拟超流体 3He-4He 混合物的热力学行为以及开发一种用于低于 1 开尔文冷却的新型超流体焦耳-汤姆逊制冷循环。米勒教授指导过 23 名硕士生和 14 名博士生。自 2009 年以来,他还担任低温工程会议董事会成员,并担任 2013 年低温工程会议的项目主席
1 John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA 2 QuTech, Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands, EU a) E-mail: kkuruma@seas.harvard.edu b) E-mail: loncar@seas.harvard.edu Abstract The ability to固体中的控制声子是从量子信息处理到传感的各种量子应用的关键。通常,声子是噪声和破坏性的来源,因为它们可以与各种固态量子系统相互作用。为了减轻这种情况,量子系统通常在毫米的温度下运行,以减少热声子的数量。在这里,我们演示了一种依赖于状态的工程语音密度的替代方法,从光子带隙结构中汲取了灵感,这些启发已用于控制量子发射器的自发发射。我们使用完整的Phononic带隙设计和制造钻石音调晶体,跨越50-70 gigahertz,量身定制,以抑制带有热浴的谐振声子的单个硅接收色中心的相互作用。在4开尔文时,我们证明了与大块相比,颜色中心的彩色中心的轨道弛豫率降低了18倍。此外,我们证明了声音带隙可以有效抑制高达20 kelvin的声子彩色中心相互作用。除了在较高温度下实现量子记忆的操作外,设计Qubit-Phonon相互作用的能力还可以使量子科学和技术的新功能能够使用,在该功能中,将声子用作量子信息的载体。工程量子系统与声子/振动的相互作用是广泛学科的重要任务,包括量子信息1-3,光电4,计量学5,能量收获6和传感7,8。相干的声子可以作为量子信息的载体9,10发挥重要作用,而热声子也会在单个量子水平下对许多量子系统的相干性质产生负面影响,并最终限制量子设备的连贯性11,12。解决此问题的最常见方法是在降低的温度下(通常在Milli-Kelvin范围内),以减少9,13,14的热声子的种群。但是,这种方法需要复杂且昂贵的低温系统,并且不会减轻
新加坡的大自然17:e2024093出版日期:2024年9月30日doi:10.26107/nis-2024-0093©新加坡大学新加坡大学生物多样性记录记录:在奶牛场斑点的基尔巴克(Keelback)作者),bryan_lim@nparks.gov.sg推荐引用。Alphonso LR&Lim B(2024)生物多样性记录:奶牛场自然公园的斑点龙骨背。新加坡的自然,17:e2024093。doi:10.26107/nis-2024-0093主题:斑点龙骨背,Xenochrophis maculatus(Reptilia:squamata:squamata:colubridae:natricinae)。主题:Kelvin K. P. Lim。位置,日期和时间:新加坡岛,武吉塔马,奶牛场自然公园; 2024年6月27日;大约在1747年左右。栖息地:次生森林。观察者:Leroy Rocky Alphonso。观察:一个例子,估计在总长度上为50厘米,在柏油路路中间一动不动。在2 m以内接近时,蛇在夸张的S形运动中迅速从观察者移动到排水沟(图。1)。到达排水管旁边的叶子时,它暂时暂停并抬起头(图。2)在滑入排水口之前。
3真空弧已被研究很长时间,不确定。在1900年,该电子被发现5年前被发现,人们在空气中“理解”了崩溃,但想知道是否可以在真空中保持更高的田地。A.A. Michelson没有真空泵,但可以在较小的距离上查看BD,而不是电离长度。他发现崩溃仍在固定的地面场发生。这项工作是由R. Millikan扩大的,他研究了各种实验细节。凯尔文勋爵认为崩溃是由于:静电力〜抗拉强度。他假设了大型田野增强。我们也提出了这个论点。尽管已经研究了超过100年的真空故障,但预算大量,但大部分努力旨在对组件而不是ARC物理学进行质量控制。我们的数据和建模使我们朝着不同的方向发展。
令人吃惊的是,可以从量子系统中获得的能量并不由系统的能量决定。这一违反直觉事实的物理来源是,开尔文和普朗克提出的热力学第二定律禁止从热平衡态循环提取功 [4]。因此,热状态通常被称为被动 [5]。因此,在循环(幺正)过程中可以提取的最大功由其平均能量的“非被动”部分决定。这个量定义为状态平均能量与相应被动状态之间的差,被命名为 ergotropy(来自“ergo”表示功和“trope”表示变换),类似于熵这个词 [6]。在没有相干性的系统中,非相干性 ergotropy 仅取决于能级的布居分布。然而,在能级之间存在相干性的情况下,出现了一种新的非经典贡献,即相干性 ergotropy [7]。值得注意的是,它是非负的,表明一致性可以增强系统的工作生产能力。
量子点中的自旋量子比特为可扩展量子信息提供了一个颇具吸引力的平台,因为它们与半导体制造兼容 [1, 2]、具有长相干时间 [3],并且能够在超过 1 开尔文的温度下工作 [4, 5]。量子比特逻辑可以通过脉冲交换相互作用 [6–8] 或通过驱动旋转 [9–12] 来实现。在本文中,我们表明,这些方法可以组合起来,在单个设备中执行大量本机双量子比特门,从而减少执行量子算法的操作开销。我们展示了在高于 1 开尔文的温度下,单量子比特旋转以及双量子比特门 CROT、CPHASE 和 SWAP。此外,我们实现了绝热、非绝热和复合序列,以优化量子比特控制保真度和门时间。我们发现可以在 67 纳秒内执行的双量子比特门,通过理论分析实验噪声源,我们预测保真度将超过 99%。这有望使用可嵌入量子集成电路经典电子器件的量子硬件实现容错操作。双量子比特门是量子信息科学的核心,因为它们可用于创建复杂度超出经典模拟范围的纠缠态 [13],并最终可实现实际相关的量子算法 [14]。因此,优化双量子比特门是所有量子比特平台的核心方面 [15]。在量子点系统中,可以利用相邻量子点中自旋量子比特之间的交换相互作用自然地实现双量子比特门 [1]。当交换能量远大于量子比特的塞曼能量差时,脉冲相互作用会驱动 SWAP 振荡 [1, 6],而当塞曼能量差远大于交换能量时,则会导致 CPHASE 振荡 [16]。还需要实现单量子比特门来访问完整的两量子比特希尔伯特空间,这需要量子比特之间的可区分性。这通常是通过自旋轨道耦合 [3] 或集成纳米磁体 [17, 18] 来实现的,从而产生显著的塞曼能量差。在这种情况下实现高保真 SWAP 门需要极大的
彩色光学中心是晶格中的功能缺陷,在原本透明的钻石中吸收并发出光。它们具有有趣的物理特性,具有各种可能的应用,从量子通信到生物医学。这项工作旨在研究与SI-V中心相关的光电压的产生,以在与有机分子相互作用中使用。作品的部分任务是:1)熟悉有关材料和方法的推荐和对文献的熟悉。准备自己的重点概述,概述当前的艺术状态。2)设计合适的设置,并在SIV中心对纳米晶钻石薄层的SIV中心上的工作函数和光伏作为激发波长的函数。3)对具有不同厚度,不同表面修饰(氢,氧)的样品进行测量,作为时间和照明的功能。使用可调激光器来照亮样品并对波长400-800 nm进行测量。4)评估和比较各种样本系列的工作函数和光电压趋势。
超负荷后的恢复时间(注3)150 150 ns输出电压挥杆(1kΩ负载)(注意4)2 3 2 3 2 3 V PP输出电压摇摆(50Ω负载(注释4)0.7 0.9 0.9 0.9 0.9 0.9 0.9 0.9 V pp dc输出输出接收电压偏移电压-1 0.25 1 0.25 1-1 0.25 1 -1-1 0.25 1 -V dc apd温度(室内温度) 5.1±5%5.1±5%kΩ正供应电流(V +)20 35 20 35 MA负电源电流(V-)10 20 10 20 MA注意1:在指定范围内的V OP的特定值将与每个设备一起提供。注2:NEP被计算为输出光谱噪声电压除以典型的响应性。注释3:0 DBM,带有250 ns脉冲。注释4:脉冲操作,交流耦合注5:可以使用以下等式计算开尔文的热敏电阻的温度:
基于LLM的代码转换文本生成,用于语法误差校正。汤姆·波特和郑元。emnlp 2024。提示开源和商业语言模型以进行语法错误校正英语学习者文本。克里斯托弗·戴维斯(Christopher Davis),安德鲁·凯恩斯(Andrew Caines),ØisteinE。安德森(Andersen E.ACL 2024调查结果。英语学习者对代码切换句子的语法错误校正。Kelvin Chan,Christopher Bryant,Li Nguyen,Andrew Caines和Zheng Yuan。 lrec-coling2024。 语法误差校正。 Christopher Bryant,Zheng Yuan,Muhammad Reza Qorib,Hannan Cao,Hwee Tou ng和Ted Briscoe。 计算语言学; https://doi.org/10.1162/coli_a_00478建立用于代码转换的教育技术:当前的实践,困难和未来方向。 li nguyen,Zheng Yuan和Graham Seed。 语言; https://doi.org/10.3390/languages7030220Kelvin Chan,Christopher Bryant,Li Nguyen,Andrew Caines和Zheng Yuan。lrec-coling2024。语法误差校正。Christopher Bryant,Zheng Yuan,Muhammad Reza Qorib,Hannan Cao,Hwee Tou ng和Ted Briscoe。计算语言学; https://doi.org/10.1162/coli_a_00478建立用于代码转换的教育技术:当前的实践,困难和未来方向。li nguyen,Zheng Yuan和Graham Seed。语言; https://doi.org/10.3390/languages7030220