• Bosch Bruguera M.、López Bermúdez S.、Detrell G.、Ewald R.,通过虚拟现实和眼动追踪对 SIRIUS-21 空间模拟进行航天器对接驾驶性能评估,第 75 届国际宇航大会,意大利米兰,2024 年 • Detrell G.、Salman L、Santaeufemia S.,慕尼黑工业大学航空航天硕士载人航天专业课程,ICES-2024-279,第 53 届国际环境系统会议,美国肯塔基州路易斯维尔,2024 年 • De Micco、Veronica 等人,植物和微生物科学与技术作为太空生物再生生命支持系统的基石,DOI:10.1038/s41526-023-00317-9,npj Microgravity 9. Jg.,Nr. 1,第 69 页,2023 年 • Detrell, G.:用于月球基地氧气和食物生产的 Chlorella Vulgaris 光生物反应器——潜力与挑战,DOI:10.3389/fspas.2021.700579,天文学和空间科学前沿,2021 年 • Detrell G.、Helish H.、Keppler J.、Martin J.、Henn N.:从生物过滤到气体通量生物处理的有前景的选择,第 20 章 - 用于太空应用的微藻联合空气活化和生物质生产,DOI:10.1016/B978-0-12-819064-7.00020-0,2020 年 • Detrell G.、Schwinning M.、Ewald R.:学习如何设计空间站的国际和跨学科方法, DOI:10.1016/j.actaastro.2018.12.009,宇航学报,2019 • Detrell G.、Keppler J.、Helisch H.、Martin J.、Belz S.、Henn N.、Ewald R.、Fasoulas S.、Hartstein H.、Angerer O.:PBR@LSR 实验 – 准备飞行, IAC-18-A1.7.6,第 69 届国际宇航大会,德国不来梅,2018 年
soergel bjon 1,∗,塞巴斯蒂安·劳纳(Sebastian Rauner)1,马萨诸塞州2,3 ,Geanderson Ambrose 3,Ana Paula Dutra 8,9 MS,Jan Philipp Dietrich 1,Alouis Dirnaichner 1 Johanna Hoppen 1,FlorianHumpenöder ,约翰内斯·科赫(Johannes Koch)1,古纳尔·沃尔夫(Gunnar Wolf)1,11,lotze-campen英雄1,12, ,莎拉·康奈尔(Sarah Cornell)8,施密特15,施密特15福克15,
本报告的主要作者和协调员是IEA电力市场分析师Stefan Lorenczik博士和NEA高级经济顾问Jan Horst Keppler教授。有效的管理监督由IEA气体,煤炭和电力市场部负责人彼得·弗雷泽(Peter Fraser)和NEA核技术开发与经济学部(NTE)负责人Sama Bilbao YLeón博士提供。NEA的Lucas Mir先生和Gabriel Sousa先生,以及IEA的Sunah Kim女士,在LCOE国家数据的分析和准备方面提供了宝贵的帮助。IEA世界能源展望的发电建模和分析的负责人Brent Wanner先生在Connor Donovan先生的支持下写了第4章关于“价值调整后的电力定位成本(Valcoe)”。Lorenczik博士在第5章中准备了“灵敏度分析”。
Elena Cotsiliti, Valentine Lion, Svenge Schuehle, Olivier Govaere, And Li, Monique J. Wolf, Helena Horvatic, Skrevant Gupta, Tracy Gupta, Tracy O'Connor, Anastasios D. Giannou, Ahmad Mustafa Shiri, Schlesinger, Maria Beccaria, Charlotte Rennert, Dominic Pfister, Angry, Iana Gadjalo,Neda。 Jakob Janzen,Singh Indrabhadur,Chaofan粉丝,Xinyuan Liu,Monika Rau,Martin Feuchenberg,Eva Schwaneck,Sebastian J. Wallace。 Burst,Mihael Vicur,Mihael Vicur,Hellmut G. Augustin。阿卜杜拉(Abdullah),德克·哈勒(Dirk Haller),弗兰克·塔克(Frank Tacke),昆汀·安斯特(Quentin M.
分子超分辨率显微镜(Chen等,2015),Geneti Cally用SNAP-TAG(一种突变的人O 6-烷基鸟嘌呤-DNA-烷基转移酶)标记了SOD1,可以用各种合成探测器将其共价标记(Keppler et al。通过两轮CRISPR-CAS9介导的同源性建议,获得了遗传修饰的H1 HESC纯合子克隆(H1_SOD1-SNAP)。在三氨基 - 酸 - 酸 - 链接中,将SNAP基因插入了SOD1编码区的C末端(图1 a)。H1 HESC与单个诱导RNA(SGRNA)-CAS9 PLAS MIDS和含有质粒的重组供体共转染。挑选了在分裂克隆中出现的并进行筛选以进行快照插入。首先获得了由一个快照敲入等位基因组成的杂合子克隆,并进行了第二轮CRISPR-CAS9诱导的SNAP敲击。然后,我们成功地产生了通过基因分型PCR,Sanger测序和Southern blot分析确认的纯合子快照敲入克隆(图1 B,补充。 图 1和补充。 图 2)。 通过使用抗SNAP和抗SOD1抗体进行免疫印迹证实了SOD1-SNAP融合蛋白在敲门细胞裂解物中的表达(图1 B,补充。图1和补充。图2)。通过使用抗SNAP和抗SOD1抗体进行免疫印迹证实了SOD1-SNAP融合蛋白在敲门细胞裂解物中的表达(图1 F和补充。图4)。大多数SOD1-SNAP蛋白在敲击细胞裂解物中保持完整,仅几乎无法检测到的未标记的SOD1信号水平,这可能源自裂解(图1 f)。与H1亲本细胞中的内源SOD1水平相比,总体SOD1-SNAP蛋白水平降低了,这表明TAG