尽管基本面极具支撑作用(创纪录的农作物产量、强劲的全球粮食和油籽价格),该部门的 EBITDA 仍减少了一倍,至 2.19 亿美元,其中 1.45 亿美元的损失主要源于库存价值降至可实现净值以及使用权资产、商誉和 PP&E 的减值。扣除此类损失后,该部门的 EBITDA 在 2022 财年最终为 3.64 亿美元,其中 99% 是在上半年获得的,而在 2022 财年下半年,农业部门的 EBITDA 接近于零。鉴于农业业务的前景模糊,假设乌克兰的海港长期关闭,集团决定剥离经营 13.4 万公顷租赁土地的农业实体、相关基础设施和营运资金,以降低运营风险。
功能性磁共振成像 (fMRI) 中的一个关键问题是从嘈杂的高维信号中估计空间活动模式。空间平滑提供了一种规范化此类估计的方法。然而,标准平滑方法忽略了神经活动的相关性在不同的脑区可能以不同的速率下降,或者在解剖或功能边界上表现出不连续性的事实。此外,这种方法没有利用这样一个事实,即相距甚远的脑区可能由于双侧对称或脑区网络组织而表现出强相关性。为了捕捉这种非平稳空间相关结构,我们引入了脑核,一种用于全脑活动模式的连续协方差函数。我们将脑核定义为从 3D 脑坐标到潜在嵌入空间的连续非线性映射,用高斯过程 (GP) 参数化。脑核将体素之间的先验协方差指定为它们在嵌入空间中位置之间距离的函数。 GP 映射以非线性方式扭曲大脑,使高度相关的体素在潜在空间中靠得很近,而不相关的体素则相距很远。我们使用静息状态 fMRI 数据估计大脑内核,并开发一种基于块坐标下降的精确、可扩展的推理方法来克服高维(10-100K 体素)的挑战。最后,我们通过多任务 fMRI 数据集的大脑解码和因子分析来说明大脑内核的实用性。
Oracle 致力于多元化和包容性。Oracle 尊重并重视多元化的员工队伍,这可以提高思想领导力和创新能力。作为我们建立更具包容性的文化以对我们的员工、客户和合作伙伴产生积极影响的计划的一部分,我们正在努力从我们的产品和文档中删除不敏感的术语。我们还意识到必须保持与客户现有技术的兼容性,并需要随着 Oracle 的产品和行业标准的发展确保服务的连续性。由于这些技术限制,我们删除不敏感术语的工作仍在进行中,需要时间和外部合作。
内核回归是一种良好的非线性回归方法,其中使用周围训练样品的加权平均值来实现测试点的目标值。通常通过将基于距离的内核函数应用于每个样品,从而获得了权重,该函数假定存在良好的距离。在本文中,我们构建了一种用于监督度量学习的新颖算法,该算法通过将剩余的重新介绍错误降至最低,从而学习了距离功能。我们表明,我们的算法使内核回归与几个基准数据集的最先进的状态进行了比较,并且我们提供了充分的实现详细信息,从而使应用程序可以应用于具有〜O(10K)内置的数据集。此外,我们表明我们的al-gorithm可以看作是PCA的监督变化,可用于降低降低和高度数据可视化。
我们通过重现Hilbert空间的相关协方差操作员来考虑概率分布的分析。我们表明,这些操作员的冯·诺伊曼熵和相对熵与香农熵和相对熵的通常概念密切相关,并具有许多特性。它们与概率分布的各种牙文的有效估计算法一起出现。我们还考虑了产品空间,并表明对于张量产品内核,我们可以定义互信息和联合熵的概念,然后可以完美地表征独立性,但只有部分条件的独立性。我们最终展示了这些新的相对熵的新概念如何导致日志分区函数上的新上限,这些概念可以与变异推理方法中的凸优化一起使用,从而提供了新的概率推理方法家族。
D-Wave 已经围绕其量子退火器提供了一个广泛的软件库,并且已经实现了几个转换步骤 [3]。我们不想与 D-Wave 的 API 竞争,而是希望以专注于原始问题的实例中心方法与之相伴。我们简化所提供功能的一个具体示例是处理次数大于 2 的多项式,这只能通过 D-Wave API 通过绕行获得,参见 [3],这意味着用户需要了解结构差异。在 quark 中,不需要其他任何内容,只需要基类。随着从约束问题到无约束问题的步骤,引入了具有相应惩罚项的约简变量,从而自动降低多项式的次数。
一般来说,首先要实现一个实例,即问题定义参数的容器,如图 2 中的单元格 2 所示。从该实例构建 ConstrainedObjective,它是一个处理实例数据以获取目标函数和约束集合的工厂,参见单元格 3。然后可以将后者自动转换为相应的惩罚目标项,这些惩罚目标项与实际目标函数一起包含在 ObjectiveTerms 中。目标项的加权和形成 Objective,即最终的 Ising/QUBO 问题。上述步骤均在单元格 5 中执行,从使用单元格 4 中定义的参数实例化具体实例开始。
kerstst。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 KOT_SIM_AGG。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 3 kot_sim_make。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。2 KOT_SIM_AGG。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 kot_sim_make。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 kot_sim_ot。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 kot_sim_reg。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 run_myot。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 run_myots。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。6
这是ForcePoint的Forcepoint NGFW加密内核模块(软件版本:3.0)的非专有密码模块安全策略。本安全策略描述了Forcepoint NGFW加密内核模块(称为加密模块,模块,图书馆)如何满足联邦信息处理标准(FIPS)出版物140-3的安全要求,详细介绍了美国和加拿大政府对加密模块的要求。有关FIPS 140-3标准和验证计划的更多信息可在国家标准技术研究所(NIST)和加拿大网络安全中心(CCCS)加密模块验证程序(CMVP)网站https:///csrc.nist.gov/project/project/projects/crypphepcraphic- module-valiledication-progracmack