推导出一种新型的完全分布式联合核学习和聚类框架,该框架能够以无监督的方式确定聚类配置。利用半定规划来量化候选核相似矩阵与特定秩的块对角线结构的接近程度。利用凸函数差和块坐标下降,推导出一种递归算法,该算法联合确定适当的核相似矩阵和聚类因子。以可分离的方式重新表述所涉及的半定程序,我们基于交替方向乘数法,构建一个完全分布式方案,通过协作的相邻代理在自组织网络中实现联合核学习和聚类。收敛声明表明,所提出的算法框架返回有界相似核更新,促进块对角线结构。利用合成数据和真实数据的详细数值示例表明,分布式新方法可以实现接近甚至超过现有集中式替代方案所实现的聚类性能。关键词:分布式学习、内核、聚类、无监督学习、优化
摘要:众所周知,共享硬件元素(例如缓存)会引入微架构侧信道泄漏。消除这种泄漏的一种方法是不跨安全域共享硬件元素。然而,即使在无泄漏硬件的假设下,其他关键系统组件(例如操作系统)是否会引入软件引起的侧信道泄漏仍不清楚。在本文中,我们提出了一种新颖的通用软件侧信道攻击 KernelSnitch,针对内核数据结构(例如哈希表和树)。这些结构通常用于存储内核和用户信息,例如用户空间锁的元数据。KernelSnitch 利用了这些数据结构的大小可变的特性,范围从空状态到理论上任意数量的元素。访问这些结构所需的时间取决于元素的数量(即占用率)。这种变化构成了一个定时侧信道,可被非特权的孤立攻击者从用户空间观察到。虽然与系统调用运行时相比,时间差异非常小,但我们演示并评估了可靠地放大这些时间差异的方法。在三个案例研究中,我们表明 KernelSnitch 允许非特权和孤立的攻击者泄露来自内核和其他进程活动的敏感信息。首先,我们演示了传输速率高达 580 kbit/s 的隐蔽通道。其次,我们利用 Linux 在哈希表中使用的特定索引,在不到 65 秒的时间内执行了内核堆指针泄漏。第三,我们演示了网站指纹攻击,F1 分数超过 89%,表明可以使用 KernelSnitch 观察到其他用户程序中的活动。最后,我们讨论了针对与硬件无关的攻击的缓解措施。
使用高斯工艺(GP)和Matérn和径向基函数(RBF)协方差函数的贝叶斯优化通常用于优化黑盒功能。Matérn和RBF内核没有对函数域的任何假设,这可能会限制其在有限域中的适用性。为了解决限制问题,我们引入了一个非平稳β单元Hyper-Cube(BUC)内核,该内核是由Beta分布密度函数的产物诱导的,并允许在有界域上建模功能。为了提供理论见解,我们在使用BUC内核的GP上限置信度(GP-UCB)算法时提供了信息增益和累积后悔界限的分析。我们的实验表明,在不同问题中,BUC内核始终优于众所周知的Matérn和RBF内核,包括合成功能优化以及视觉和语言模型的压缩。
摘要 - 在许多机器人应用中重建三维(3D)场景至关重要。机器人需要识别哪些对象及其位置和形状,以通过给定的任务精确地操纵它们。移动机器人,尤其是通常使用轻质网络在RGB图像上细分对象,然后通过深度图进行定位;但是,他们经常会遇到掩盖物体过度掩盖的分布场景。在本文中,我们通过使用非参数统计方法来完善分割错误来解决3D场景重建中的跨分割质量的问题。为了提高掩模的精度,我们将预测的遮罩映射到深度框架中,以通过内核密度估算它们的分布。然后,对异常值进行深度感知的拒绝,而无需以自适应方式进行额外的pa-rameters,以使其分布外情景,然后使用投影签名的距离函数(SDFS)进行3D重建。我们在合成数据集上验证了我们的方法,该方法显示了全景映射的定量和定性结果的改进。通过现实世界测试,结果还显示了我们方法在实体机器人系统上部署的能力。我们的源代码可在以下网址提供:https://github.com/mkhangg/refined Panoptic映射。
这是ForcePoint的Forcepoint NGFW加密内核模块(软件版本:3.0)的非专有密码模块安全策略。本安全策略描述了Forcepoint NGFW加密内核模块(称为加密模块,模块,图书馆)如何满足联邦信息处理标准(FIPS)出版物140-3的安全要求,详细介绍了美国和加拿大政府对加密模块的要求。有关FIPS 140-3标准和验证计划的更多信息可在国家标准技术研究所(NIST)和加拿大网络安全中心(CCCS)加密模块验证程序(CMVP)网站https:///csrc.nist.gov/project/project/projects/crypphepcraphic- module-valiledication-progracmack
Oracle 致力于多元化和包容性。Oracle 尊重并重视多元化的员工队伍,这可以提高思想领导力和创新能力。作为我们建立更具包容性的文化以对我们的员工、客户和合作伙伴产生积极影响的计划的一部分,我们正在努力从我们的产品和文档中删除不敏感的术语。我们还意识到必须保持与客户现有技术的兼容性,并需要随着 Oracle 的产品和行业标准的发展确保服务的连续性。由于这些技术限制,我们删除不敏感术语的工作仍在进行中,需要时间和外部合作。
鲁棒性是在将深度学习模型纳入野外时要考虑的重要方面。nuber的研究一直致力于研究视觉变压器(VIT)的鲁棒性,这些研究一直是自2020年代黎明以来作为视觉任务的主流背部选择。最近,一些大型内核探手会以令人印象深刻的性能和效率卷土重来。但是,仍然尚不清楚大型内核网络是否稳健以及其稳健性的归因。在本文中,我们首先对大型内核弯曲的鲁棒性及其与典型的小核对应物的差异进行了全面评估,并在六个不同的稳健性基准数据集中进行了差异。然后分析其强大鲁棒性背后的根本因素,我们设计了来自定量和定性观念的实验,以揭示与典型的Convnets完全不同的大核转交曲线的诱因。我们的实验首次证明了纯CNN可以实现具有可比性甚至优于VIT的实质性鲁棒性。我们对遮挡方差的分析,内核注意模式和频率特征为鲁棒性提供了新的见解。代码可用:https://github.com/lauch1ng/lkrobust。
摘要 - 在许多机器人应用中重建三维(3D)场景至关重要。机器人需要识别哪些对象及其位置和形状,以通过给定的任务精确地操纵它们。移动机器人,尤其是通常使用轻质网络在RGB图像上细分对象,然后通过深度图进行定位;但是,他们经常会遇到掩盖物体过度掩盖的分布场景。在本文中,我们通过使用非参数统计方法来完善分割错误来解决3D场景重建中的跨分割质量的问题。为了提高掩模的精度,我们将预测的遮罩映射到深度框架中,以通过内核密度估算它们的分布。然后,对异常值进行深度感知的拒绝,而无需以自适应方式进行额外的pa-rameters,以使其分布外情景,然后使用投影签名的距离函数(SDFS)进行3D重建。我们在合成数据集上验证了我们的方法,该方法显示了全景映射的定量和定性结果的改进。通过现实世界测试,结果还显示了我们方法在实体机器人系统上部署的能力。我们的源代码可在以下网址提供:https://github.com/mkhangg/refined Panoptic映射。
当模块通过术前的自我测试和加密算法自我测试(铸件)后成功启动时,该模块默认情况下以批准的操作模式运行,只能通过调用表9中的非批准服务列出的一项非批准的模式。第4节提供了有关该模块实现服务指标的详细信息。服务指标识别何时调用批准的服务。当模块以批准模式运行时,加密货币官不得配置非批准算法的使用。如果使用了未批准的算法,则该模块在未批准的模式下运行。在使用任何未批准的服务之前,加密型官员应将所有CSP归零,该CSP将模块置于非批准的操作模式中。
摘要:本文介绍了气候反馈内核,称为“能量增益内核”(EGK)。egk允许将净的长波辐射能扰动分开,由普朗克反馈矩阵明确地将单个层的热能发射扰动和热辐射能局部收敛在单个层上的热能扰动扰动,从而导致表面温度的大气层变化 - 对单位强度的响应对单位的响应响应,而在单位强度强迫分别为单位分别为单位分别为单位分别为单位分别为单位分别为单位分别为中心。前者由普朗克反馈矩阵的对角矩阵和后者表示。元素都是正面的,代表了在强大的强迫并在其他层上获得的能量的层上放大的能量扰动,这两种能量都是通过大气中的辐射热耦合实现的 - 表面共同的。将EGK应用于输入能量扰动,无论是由于对外部能量扰动的反应,无论是外部还是内部,例如水蒸气和反照率反馈,都会通过大气表面 - 表面柱中的辐射热摄取来产生其总能量扰动。由于EGK的强度仅取决于气候平均状态,因此提供了一种解决方案,可以有效地客观地将控制气候信息与气候扰动中的气候扰动分开以进行气候反馈研究。鉴于EGK包含关键气候有关平均温度,水蒸气,云和表面压力的均值状态信息,我们设想,EGK在不同气候模型中的EGK多样性可以洞悉为什么在相同的人为绿色房屋气体下的探究中,不同的绿色房屋气体会增加全球平均表面温暖的varying模型。