我们介绍了内核弹性自动编码器(KAE),这是一种基于变压器架构的自我监管的生成模型,具有增强的分子设计性能。KAE采用了两个创新的损失函数:修改后的最大平均差异(M-MMD)和加权重建(L WCEL)。 与使用传统的kullback损失(vae的Leibler损失或标准的最大平均差异)相比,M-MMD损失显着改善了KAE的生成性能。 包括加权重建损失l wcel,Kae同时实现有效的生成和准确的重建,从而允许在现有生成方法中介于VAE和自动编码器之间中间的生成行为。 KAE的进一步进步包括与有条件生成的集成,在受限的优化中设定了新的最新基准测试。 此外, KAE已经证明了其在对接应用中产生具有良好结合亲密关系的分子的能力,如Autodock Vina和Glide分数所证明的那样,表现出优于培训数据集中所有现有的候选者。 除了分子设计之外,Kae还希望在广泛的应用中逐渐解决问题。KAE采用了两个创新的损失函数:修改后的最大平均差异(M-MMD)和加权重建(L WCEL)。与使用传统的kullback损失(vae的Leibler损失或标准的最大平均差异)相比,M-MMD损失显着改善了KAE的生成性能。包括加权重建损失l wcel,Kae同时实现有效的生成和准确的重建,从而允许在现有生成方法中介于VAE和自动编码器之间中间的生成行为。KAE的进一步进步包括与有条件生成的集成,在受限的优化中设定了新的最新基准测试。KAE已经证明了其在对接应用中产生具有良好结合亲密关系的分子的能力,如Autodock Vina和Glide分数所证明的那样,表现出优于培训数据集中所有现有的候选者。除了分子设计之外,Kae还希望在广泛的应用中逐渐解决问题。
金属微量元素(MTE)是天然水域中最有害的微污染物之一。消除它们有助于提高饮用水的质量和安全性并保护人类健康。在这项工作中,我们使用芒果kernel粉(MKP)作为生物添加物材料,以从Water中去除CR(VI)。UV可见光谱法监测和量化Cr(VI)。优化了一些参数,例如pH,芒果粉,质量和接触时间,以确定吸附能力和去除率。吸附动力学,平衡,等温线和热力学参数,例如ΔgL,ΔH˚和ΔS˚以及FTIR,以及通过MKP更好地了解CR(VI)的去除过程。达到94.87 mg/g的吸附能力,在298 K时为30分钟的最佳接触时间。获得的结果符合PSEU-DO-DO-DOSEC-FRENDLICH FREUNDLICH吸附等温线模型。最终使用FTIR监测吸收带的演变,而扫描电子显微镜(SEM)和能量色散X射线光谱(EDS)用于评估吸附剂的表面特性和形态。
摘要。最近使用的深神经网络(DNN)是通过计算单元(例如CPU和GPU)物理部署的。这样的设计可能会导致重大的计算负担,显着的延迟和密集的功耗,这是物联网(IoT),边缘计算和无人机的使用等应用的关键限制。光学计算单元(例如,超材料)的最新进展揭示了无势能和光速神经网络。但是,超材料神经网络(MNN)的数字设计从根本上受到其物理局限性的限制,例如精确,噪声和制造过程中的带宽。此外,未通过标准的3×3卷积内核完全探索MNN的独特优势(例如,光速计算)。在本文中,我们提出了一种新型的大核超材料神经网络(LMNN),该神经网络(LMNN)最大程度地利用了最先进的ART(SOTA)MNN的数字能力(SOTA)MNN,并通过模型重新参数和网络压缩,同时也考虑了光学限制。新的数字学习方案可以在建模元元素的物理限制时最大化MNN的学习能力。使用拟议的LMNN,可以将卷积前端的计算成本用于制造的光学硬件。两个公开可用数据集的实验结果表明,优化的混合设计提高了分类准确性,同时降低了计算潜伏期。提出的LMNN的发展是朝着无能和光速AI的最终目标迈出的有前途的一步。
摘要 - 这项研究解决了管理糖尿病的更先进诊断工具的必要性,糖尿病是一种慢性代谢疾病,导致葡萄糖,脂质和蛋白质代谢的破坏是由胰岛素活性不足引起的。该研究研究了机器学习模型的创新应用,特别是堆叠的多内核支持向量机随机森林(SMKSVM-RF),以确定它们在识别医疗数据中复杂模式方面的有效性。创新的合奏学习方法SMKSVM-RF结合了支持向量机(SVM)和随机森林(RFS)的优势,以利用其多样性和互补特征。SVM组件实现多个内核来识别唯一的数据模式,而RF组件由决策树组成,以确保可靠的预测。将这些模型集成到堆叠的体系结构中,SMKSVM-RF可以通过优势通过优势来增强分类或回归任务的总体预测性能。这项研究的一个重大发现是引入SMKSVM-RF,它在混淆矩阵中显示出令人印象深刻的73.37%的精度。此外,其召回率为71.62%,其精度为70.13%,值得注意的F1分数为71.34%。这种创新技术显示了增强当前方法并发展为理想的医疗系统的潜力,这表明糖尿病检测方面的一个值得注意的一步。结果强调了复杂的机器学习方法的重要性,并强调了SMKSVM-RF如何提高诊断精度并有助于持续发展医疗保健系统,以实现更有效的糖尿病管理。
利用量子信息的特性来造福机器学习模型可能是量子计算领域最活跃的研究领域。这种兴趣支持了多种软件框架(例如 Qiskit、Pennylane、Braket)的开发,以实现、模拟和执行量子算法。它们中的大多数允许我们定义量子电路、运行基本量子算法并访问低级原语,具体取决于此类软件应该运行的硬件。对于大多数实验,这些框架必须手动集成到更大的机器学习软件管道中。研究人员负责了解不同的软件包,通过开发长代码脚本来集成它们,分析结果并生成图表。长代码通常会导致错误的应用程序,因为平均错误数量与程序长度成正比。此外,其他研究人员将很难理解和重现实验,因为他们需要熟悉实验中涉及的所有不同软件框架
摘要:一个重组的近交系数量,包括371条线,由每个尖峰(KNP)基因型T1208和低KNPS基因型Chuannong18(CN18)开发。由小麦55k SNP阵列构建的遗传连锁图由11,583个标记组成。在三年内检测到与KNP有关的定量性状基因座(QTL)。分别使用ICIM-BIP,ICIM-MET和ICIM-EPI方法来识别八个,二十七个和四个QTL。一个QKTL,QKNPS.SAU-2D.1,在染色体2D上映射,可以平均解释18.10%的表型变化(PVE),并被视为KNP的主要稳定QTL。此QTL位于2D染色体上的0.89 MB间隔,并由标记物AX-109283238和AX-111606890倾斜。此外,设计了与qknps.sau-2d.1紧密相关的Kompetive Primentififififif PCR(KASP)标记的KASP-AX-111462389。QKNPS.SAU-2D.1对KNP的遗传作用成功地确认了两个RIL种群。结果还表明,KNPS和1000个内核重量(TKW)的显着增加是由QKNPS.SAU-2D.1引起的,这是由于尖峰数量(SN)的减少而克服了劣势,并最终导致晶粒产量的显着增加。此外,在QKNPS.SAU-2D.1位于中国春季参考基因组中的间隔内,仅发现了十五个基因,并且两个可能与KNP相关的基因都被鉴定出来。qknps.sau-2d.1可能会为未来的高产小麦育种提供新的资源。
一般来说,首先要实现一个实例,即问题定义参数的容器,如图 2 中的单元格 2 所示。从该实例构建 ConstrainedObjective,它是一个处理实例数据以获取目标函数和约束集合的工厂,参见单元格 3。然后可以将后者自动转换为相应的惩罚目标项,这些惩罚目标项与实际目标函数一起包含在 ObjectiveTerms 中。目标项的加权和形成 Objective,即最终的 Ising/QUBO 问题。上述步骤均在单元格 5 中执行,从使用单元格 4 中定义的参数实例化具体实例开始。
D-Wave 已经围绕其量子退火器提供了一个广泛的软件库,并且已经实现了几个转换步骤 [3]。我们不想与 D-Wave 的 API 竞争,而是希望以专注于原始问题的实例中心方法与之相伴。我们简化所提供功能的一个具体示例是处理次数大于 2 的多项式,这只能通过 D-Wave API 通过绕行获得,参见 [3],这意味着用户需要了解结构差异。在 quark 中,不需要其他任何内容,只需要基类。随着从约束问题到无约束问题的步骤,引入了具有相应惩罚项的约简变量,从而自动降低多项式的次数。
摘要 最近,将经典数据转换为量子信息为改进机器学习任务带来了巨大的潜在应用。特别是,量子特征图可以提供一种有前途的替代内核来增强支持向量分类器 (SVC)。虽然现有的设计高性能特征图的指导原则很少,但一种称为 Pauli 特征图的量子电路系列可以说是表现良好的。该系列的特点是量子电路上出现 Pauli 门,同时它仍具有几个可调参数,其最优值对数据集的性质很敏感。在这项工作中,我们提出了一种使用遗传算法 (GA) 自动生成此类特征图的方法,旨在最大限度地提高模型的准确性,同时尽可能保持电路简单。我们将该方法应用于合成数据集和真实数据集。与几个经典和量子核基线相比,讨论了由此产生的分类指标和最佳电路。一般来说,GA 生成的特征图比其他基线表现更好。此外,结果表明,进化电路在不同的数据集之间趋于不同,这表明该通用方案可用于确定特定数据集的最佳定制量子特征图。