摘要:本文介绍了气候反馈内核,称为“能量增益内核”(EGK)。egk允许将净的长波辐射能扰动分开,由普朗克反馈矩阵明确地将单个层的热能发射扰动和热辐射能局部收敛在单个层上的热能扰动扰动,从而导致表面温度的大气层变化 - 对单位强度的响应对单位的响应响应,而在单位强度强迫分别为单位分别为单位分别为单位分别为单位分别为单位分别为单位分别为中心。前者由普朗克反馈矩阵的对角矩阵和后者表示。元素都是正面的,代表了在强大的强迫并在其他层上获得的能量的层上放大的能量扰动,这两种能量都是通过大气中的辐射热耦合实现的 - 表面共同的。将EGK应用于输入能量扰动,无论是由于对外部能量扰动的反应,无论是外部还是内部,例如水蒸气和反照率反馈,都会通过大气表面 - 表面柱中的辐射热摄取来产生其总能量扰动。由于EGK的强度仅取决于气候平均状态,因此提供了一种解决方案,可以有效地客观地将控制气候信息与气候扰动中的气候扰动分开以进行气候反馈研究。鉴于EGK包含关键气候有关平均温度,水蒸气,云和表面压力的均值状态信息,我们设想,EGK在不同气候模型中的EGK多样性可以洞悉为什么在相同的人为绿色房屋气体下的探究中,不同的绿色房屋气体会增加全球平均表面温暖的varying模型。
摘要 最近,将经典数据转换为量子信息为改进机器学习任务带来了巨大的潜在应用。特别是,量子特征图可以提供一种有前途的替代内核来增强支持向量分类器 (SVC)。虽然现有的设计高性能特征图的指导原则很少,但一种称为 Pauli 特征图的量子电路系列可以说是表现良好的。该系列的特点是量子电路上出现 Pauli 门,同时它仍具有几个可调参数,其最优值对数据集的性质很敏感。在这项工作中,我们提出了一种使用遗传算法 (GA) 自动生成此类特征图的方法,旨在最大限度地提高模型的准确性,同时尽可能保持电路简单。我们将该方法应用于合成数据集和真实数据集。与几个经典和量子核基线相比,讨论了由此产生的分类指标和最佳电路。一般来说,GA 生成的特征图比其他基线表现更好。此外,结果表明,进化电路在不同的数据集之间趋于不同,这表明该通用方案可用于确定特定数据集的最佳定制量子特征图。
RKHM中监督学习的重要应用是其输入和输出是图像的任务。如果所提出的内核具有特定的参数,则产品结构是卷积,与傅立叶成分的点型相对应。通过将C ∗ - 代数扩展到更大的代数,我们可以享受比卷积更多的一般操作。这使我们能够通过在傅立叶组件之间进行交互来有效地分析图像数据。关于概括结合,我们通过Rademacher复合物理论得出了与RKHS和VVRKHS相同的结合类型。这是我们所知,这是RKHM假设类别的第一个概括。关于与现有方法的联系,我们表明,使用框架,我们可以重建现有方法,例如卷积神经网络(Lecun等,1998)和卷积内核(Mairal等,2014),并进一步概括它们。这一事实意味着我们框架的表示能力超出了现有方法。
摘要。最近使用的深神经网络(DNN)是通过计算单元(例如CPU和GPU)物理部署的。这样的设计可能会导致重大的计算负担,显着的延迟和密集的功耗,这是物联网(IoT),边缘计算和无人机的使用等应用的关键限制。光学计算单元(例如,超材料)的最新进展揭示了无势能和光速神经网络。但是,超材料神经网络(MNN)的数字设计从根本上受到其物理局限性的限制,例如精确,噪声和制造过程中的带宽。此外,未通过标准的3×3卷积内核完全探索MNN的独特优势(例如,光速计算)。在本文中,我们提出了一种新型的大核超材料神经网络(LMNN),该神经网络(LMNN)最大程度地利用了最先进的ART(SOTA)MNN的数字能力(SOTA)MNN,并通过模型重新参数和网络压缩,同时也考虑了光学限制。新的数字学习方案可以在建模元元素的物理限制时最大化MNN的学习能力。使用拟议的LMNN,可以将卷积前端的计算成本用于制造的光学硬件。两个公开可用数据集的实验结果表明,优化的混合设计提高了分类准确性,同时降低了计算潜伏期。提出的LMNN的发展是朝着无能和光速AI的最终目标迈出的有前途的一步。
本文提出了一种基于核的信息理论框架,通过利用再生核希尔伯特空间 (RKHS) 中数据投影特征空间的量子物理描述,提供时间序列不确定性的敏感多模态量化。我们特别修改了核均值嵌入,从而产生信号结构的直观物理解释,以产生基于数据的“动态势场”。这产生了一种新的基于能量的公式,该公式利用了量子理论的数学原理,并促进了每个数据样本处信号的多模态物理不确定性表示。我们在本文中证明,与现有的非参数和无监督方法相比,此类不确定性特征可以更好地在线检测时间序列数据中的统计变化点。与 VidTIMIT 说话人识别语料库子集上的离散小波变换特征相比,我们还证明了该框架在聚类时间序列序列方面具有更好的能力。
媒介传播的感染因其广泛影响以及预防,控制和治疗工作所需的大量资源,对全球卫生系统和经济体造成了重大负担。在这项工作中,我们为矢量传播感染的传输动力学制定了数学模型,并通过Atangana-Baleanu衍生物的疫苗接种作用。该模型的解决方案是正面的,并且对于状态变量的正初始值而言。我们介绍了分析模型分析的基本概念和理论。使用下一代矩阵方法,我们确定由R 0表示的阈值参数。分析了系统在无病平衡处的局部渐近稳定性。为了确定所提出模型的解决方案的存在,我们采用了定点理论。开发了一种数值方案,以在不同的输入参数下可视化系统的动态行为。数值模拟是为了说明这些参数如何影响系统的动力学。结果突出了影响媒介传播疾病的传播和控制的关键因素,从而提供了对预防和缓解策略的见解。
机器学习方法在许多领域都表现出色,包括神经影像数据分析。然而,模型性能只是神经影像分析的一个目标。从数据中获得洞察力在这一领域也至关重要,例如识别检测到的信号与认知和诊断任务相关的区域。为了满足这一需求,实现模型决策过程的可解释性至关重要。众所周知,复杂机器学习模型的预测很难解释。这限制了核支持向量机 (SVM) 等复杂模型在神经影像分析中的使用。最近,已经开发了几种基于置换的方法来解释这些复杂模型。然而,解释结果会受到与类无关的特征(如抑制变量和高背景噪声变量)的影响。在解释线性模型时也可能会出现这个问题。一个可能的原因是,当特征不独立(例如相关)时,置换过程会产生不切实际的数据实例。这些不切实际的数据实例会影响解释结果。在神经影像分析中,激活模式(对应于当前分类器的假设生成模型的估计权重)用于处理线性模型的这一问题。该方法不依赖于置换过程,而是依赖于可用的数据信息。在本文中,我们提出了一种通过激活模式解释(EAP)的新方法来解释用于神经影像数据分析的不同类型核的 SVM 模型。我们的方法可以通过估计核 SVM 模型的激活模式来生成全局特征重要性分数。我们在模拟数据集和公开的视觉任务 EEG/MEG 数据集上将我们的方法与三种流行方法进行了评估。实验结果表明,与其他三种方法相比,所提出的 EAP 方法可以提供低计算成本的解释,并且受类无关特征的影响较小。在使用视觉任务的 MEG/EEG 数据集的实验中,所提出的 EAP 方法在视觉任务 EEG/MEG 数据上提供的结果与文献中报道的大脑电活动模式一致,并且比其他解释方法快得多。
摘要 - 注意机制通过有效捕获全球环境具有显着高级的视觉模型。但是,它们对大规模数据集和实质性计算资源的依赖构成了数据筛查和资源约束方案的挑战。此外,传统的自我发作的机械主义缺乏固有的空间归纳偏见,这使它们成为对涉及较小数据集至关重要的任务至关重要的局部特征进行建模的。在这项工作中,我们引入了大型内核卷积(LKCA),这是一种新型的表述,将注意力重新诠释为单一的大内核卷积。这种设计统一了卷积体系结构的优势 - 本地性和跨性别不变性,具有自我注意力的全球背景建模能力。通过将这些属性嵌入计算高效的框架中,LKCA解决了传统注意机制的关键局限性。所提出的LKCA在各种视觉任务中实现竞争性能,尤其是在数据约束的设置中。对CIFAR-10,CIFAR-100,SVHN和TININE-IMAGENET的实验结果证明了其在图像分类中出色的能力,在紧凑型模型设置中表现出色,表现优于常规的强度机制和视觉变压器。这些发现突出了LKCA在桥接本地和全球功能建模中的有效性,为具有有限的数据和资源的现实世界应用提供了实用且强大的解决方案。
氢氧化钠是苛性钠的。与非常高浓度的氢氧化钠接触会导致眼睛,皮肤,消化系统或肺部严重燃烧。长时间或反复的皮肤接触可能会导致皮炎。谨慎处理。甲酸是一种腐蚀性化学物质,接触可以严重刺激并烧伤皮肤和眼睛,并可能造成眼睛损伤。吸入甲酸会刺激鼻子和喉咙。在通风罩乙腈中使用:避免与皮肤和眼睛接触。避免吸入蒸气或雾气。远离点火源,因为它是易燃的。盐酸:非常谨慎的手柄。浓缩的HCl具有腐蚀性。避免呼吸蒸气,并避免与皮肤和眼睛接触。仅在烟雾罩中处理。
鲁棒性是在将深度学习模型纳入野外时要考虑的重要方面。nuber的研究一直致力于研究视觉变压器(VIT)的鲁棒性,这些研究一直是自2020年代黎明以来作为视觉任务的主流背部选择。最近,一些大型内核探手会以令人印象深刻的性能和效率卷土重来。但是,仍然尚不清楚大型内核网络是否稳健以及其稳健性的归因。在本文中,我们首先对大型内核弯曲的鲁棒性及其与典型的小核对应物的差异进行了全面评估,并在六个不同的稳健性基准数据集中进行了差异。然后分析其强大鲁棒性背后的根本因素,我们设计了来自定量和定性观念的实验,以揭示与典型的Convnets完全不同的大核转交曲线的诱因。我们的实验首次证明了纯CNN可以实现具有可比性甚至优于VIT的实质性鲁棒性。我们对遮挡方差的分析,内核注意模式和频率特征为鲁棒性提供了新的见解。代码可用:https://github.com/lauch1ng/lkrobust。