摘要:机载高光谱成像已被证明是一种有效的手段,可以为生物物理变量的检索提供新的见解。然而,从机载高光谱测量中获得的无偏信息的定量估计主要需要校正双向反射分布函数 (BRDF) 所描绘的陆地表面的各向异性散射特性。迄今为止,角度 BRDF 校正方法很少结合观察照明几何和地形信息来全面理解和量化 BRDF 的影响。森林地区尤其如此,因为这些地区通常地形崎岖。本文介绍了一种校正机载高光谱影像在崎岖地形上空森林覆盖区域的 BRDF 效应的方法,在本文的补充中称为崎岖地形-BRDF (RT-BRDF) 校正。根据机载扫描仪和局部地形的特点,为每个像素计算局部视角和照明几何形状,并在崎岖地形的情况下使用这两个变量来调整 Ross-Thick-Maignan 和 Li-Transit-Reciprocal 核。新的 BRDF 模型适用于多线机载高光谱数据的各向异性。本研究中的像素数设置为 35,000,基于分层随机抽样方法,以确保全面覆盖视角和照明角度,并尽量减少 BRDF 模型对所有波段的拟合误差。基于中国林业科学研究院在普洱地区(中国)的 LiDAR、CCD 和高光谱系统 (CAF-LiCHy) 获取的多线机载高光谱数据,将应用 RT-BRDF 校正的结果与当前经验(C、太阳冠层传感器 (SCS) 加 C(SCS + C))和半物理(SCS)地形校正方法的结果进行了比较。定量评估和目视检查均表明,RT-BRDF、C 和 SCS + C 校正方法均可降低地形影响。然而,RT-BRDF 方法似乎更有效地降低多条航线重叠区域反射率的变化,其优势在于可以降低由宽视场 (FOV) 机载扫描仪、崎岖地形和长飞行时间内变化的太阳照射角度组合引起的 BRDF 效应。具体而言,针叶林和阔叶林的变异系数 (CV) 平均下降分别为 3% 和 3.5%。这种改进在近红外 (NIR) 区域(即 > 750 nm)尤为明显。这一发现为大面积机载高光谱勘测开辟了新的应用可能性。
基于内核的非线性流形学习,用于基于脑电图的功能连通性分析和渠道选择,并应用于阿尔茨海默氏病Gunawardena,R.,Sarrigiannis,P。G.,Blackburn,D。J.&he,F。出版了PDF,存放在考文垂大学的存储库原始引用:Gunawardena,R,R,Sarrigiannis,PG,Blackburn,DJ&HE,F 2023,'基于内核的非线性流动性学习,用于EEG基于EEG的功能连接分析,并适用于Alzheimer's Disean's Neurosience,Neurosience,vol,vol。523,pp。140-156。 https://dx.doi.org/10.1016/j.neuroscience.2023.05.033 doi 10.1016/j.neuroscience.2023.05.033 ISSN 0306-4522 ESSN ESSN 1873-7544出版商:Elsevier出版商:Elsevier:Elsevier这是CC BID-NC-ND-NC-ND DD( http://creativecommons.org/licenses/by-nc-nd/4.0/)
摘要:每行(KNR)的内核数是玉米(Zea Mays L.)谷物产量(GY)的重要组成部分,并且了解其遗传机制对于改善GY至关重要。在这项研究中,使用温带 - 热带 - 热带渗入线TML418和一个热带近交系列CML312作为女性父母和一个骨干玉米玉米玉米作为常见男性父母,创建了两个F 7重组近交系(RIL)种群。双向定量性状基因座(QTL)映射和全基因组关联分析(GWAS)。这项研究的目的是:(1)检测与KNR相关的基因组区域和/或基因组区域; (2)确定控制KNR的候选基因; (3)分析候选基因是否有助于改善GY。作者报告说,通过双期QTL映射与KNR密切相关的总共7个QTL,并通过GWAS识别了与KNR相关的21个SNP。在其中,在Dehong和Baoshan的两个位置检测到了一个高度凸的基因座QKNR7-1,两种映射方法。在此基因座,确定了三个新型候选基因(ZM00001D022202,ZM00001D022168,ZM0000001D022169)与KNR相关。这些候选基因主要参与与复合代谢,生物合成,蛋白质修饰,降解和变性有关的过程,所有这些都与影响KNR的渗透性发展有关。这三个候选基因先前尚未报告,被认为是KNR的新候选基因。杂种YE107×TML418的后代对KNR表现出很强的杂种,作者认为这可能与QKNR7-1有关。这项研究为玉米中KNR的遗传机制的未来研究提供了理论基础,并使用异性模式来发展高产混合体。
摘要 利用量子信息的特性来造福机器学习模型可能是量子计算领域最活跃的研究领域。这种兴趣支持了多种软件框架(例如 Qiskit、Pennylane、Braket)的开发,以实现、模拟和执行量子算法。它们中的大多数允许我们定义量子电路、运行基本量子算法并访问低级原语,具体取决于此类软件应该运行的硬件。对于大多数实验,这些框架必须手动集成到更大的机器学习软件管道中。研究人员负责了解不同的软件包,通过开发长代码脚本将它们集成起来,分析结果并生成图表。长代码通常会导致错误的应用程序,因为平均错误数量与程序长度成正比。此外,由于需要熟悉代码脚本中涉及的所有不同软件框架,其他研究人员将很难理解和重现实验。我们提出了 QuASK,这是一个用 Python 编写的开源量子机器学习框架,可帮助研究人员进行实验,特别关注量子核技术。QuASK 可用作命令行工具来下载数据集、预处理数据集、量子机器学习例程、分析和可视化结果。QuASK 实现了大多数最先进的算法,通过量子核来分析数据,并可以使用投影核、(梯度下降)可训练量子核和结构优化的量子核。我们的框架还可以用作库并集成到现有软件中,从而最大限度地提高代码重用率。
摘要:本文使用脑电图数据引入一种方法,用于在运动图像(MI)任务中对右手和左手类别进行分类。内核跨光谱功能连接网络(KCS-FCNET)方法通过提供更丰富的空间 - 频谱特征图,更简单的体系结构和更容易解释的EEG驱动的MI歧视方法来解决这些局限性。尤其是,KCS-FCNET使用基于1D横向的单个神经网络从RAW EEG数据中提取时间频率特征和跨光谱高斯内核连接层来模型通道功能关系。因此,功能连接功能映射减少了参数的数量,从而通过提取与MI任务相关的有意义的模式来改善可解释性。这些模式可以适应主题的独特特征。验证结果证明,引入KCS-FCNET浅架构是一种基于脑电图的MI分类的有前途的方法,具有在脑computer接口系统中实现现实世界使用的潜力。
摘要:研究谷物蛋白含量(GPC),1000个核重量(TKW)和归一化差异植被指数(NDVI)的基因组区域,以280种面包小麦类型类型进行了研究。使用35K公理阵列对全基因组关联(GWAS)面板进行了基因分型,并在三个环境中进行了表型。在覆盖面包小麦的A,B和D亚基因组的18个染色体上检测到总共26个标记性属性关联(MTA)。GPC显示最大MTA(16),其次是NDVI(6)和TKW(4)。最多10 mTA位于B亚基因组上,而在A和D亚基因组上映射了8个MTA。In silico analysis suggest that the SNPs were located on important putative candidate genes such as NAC domain superfamily, zinc finger RING-H2-type, aspartic peptidase domain, folylpolyglutamate syn- thase, serine/threonine-protein kinase LRK10, pentatricopeptide repeat, protein kinase-like domain superfamily,细胞色素P450和扩张蛋白。发现这些候选基因具有不同的作用,包括调节胁迫耐受性,养分重液,蛋白质积累,氮利用率,光合作用,谷物填充,线粒体功能和核心发育。新鉴定的MTA的影响将在不同的遗传背景中得到验证,以进一步利用标记育种。
Quantum机器学习是一项越来越多的研究领域,旨在执行量子计算机协助的机器学习任务。基于内核的量子机学习模型是范式涉及量子状态的范式示例,并且从这些状态之间的重叠中计算出革兰氏矩阵。在手头的内核中,常规的机器学习模型用于学习过程。在本文中,我们研究了量子支持向量机和量子内核脊模型,以预测量子系统的非马克维亚性程度。我们对幅度阻尼和相阻尼通道进行数字量子模拟,以创建我们的量子数据集。我们详细介绍了不同的内核函数,以绘制数据和内核电路以计算量子状态之间的重叠。我们表明,我们的模型提供了与完全经典模型相当的准确预测。
摘要:谷物产量是玉米中最关键和最复杂的定量性状。内核长度(KL),内核宽度(kW),内核厚度(KT)和与核大小相关的数百 - 内核重量(HKW)是玉米中与产量相关性状的必不可少的组成部分。通过广泛使用定量性状基因座(QTL)映射和全基因组关联研究(GWAS)分析,已经发现了数千个QTL和定量性状核苷酸(QTN)来控制这些性状。但是,只有其中一些被克隆并成功地用于育种计划。在这项研究中,我们详尽地收集了与四个性状相关的基因,QTL和QTN,进行了QTL和QTN的聚类识别,然后将QTL和QTN簇合并以检测共识热点区域。总共确定了与内核大小相关性状的31个热点。他们的候选基因被预测与调节内核发展过程的众所周知的途径有关。可以进一步探索识别的热点,以进行细化和候选基因验证。最后,我们提供了高产和优质玉米的策略。这项研究不仅会促进因果基因的克隆,还可以指导玉米的繁殖实践。
氢氧化钠是苛性钠的。与非常高浓度的氢氧化钠接触会导致眼睛,皮肤,消化系统或肺部严重燃烧。长时间或反复的皮肤接触可能会导致皮炎。谨慎处理。甲酸是一种腐蚀性化学物质,接触可以严重刺激并烧伤皮肤和眼睛,并可能造成眼睛损伤。吸入甲酸会刺激鼻子和喉咙。在通风罩乙腈中使用:避免与皮肤和眼睛接触。避免吸入蒸气或雾气。远离点火源,因为它是易燃的。盐酸:非常谨慎的手柄。浓缩的HCl具有腐蚀性。避免呼吸蒸气,并避免与皮肤和眼睛接触。仅在烟雾罩中处理。
尽管基本面极具支撑作用(创纪录的农作物产量、强劲的全球粮食和油籽价格),该部门的 EBITDA 仍减少了一倍,至 2.19 亿美元,其中 1.45 亿美元的损失主要源于库存价值降至可实现净值以及使用权资产、商誉和 PP&E 的减值。扣除此类损失后,该部门的 EBITDA 在 2022 财年最终为 3.64 亿美元,其中 99% 是在上半年获得的,而在 2022 财年下半年,农业部门的 EBITDA 接近于零。鉴于农业业务的前景模糊,假设乌克兰的海港长期关闭,集团决定剥离经营 13.4 万公顷租赁土地的农业实体、相关基础设施和营运资金,以降低运营风险。