• 但为什么压缩在 ICF 中如此重要? • 想法: • 固体时 ρ DT = 0.25g/cc • 点火要求:ρR HS > 0.3 g/cm 2 • 对于固体密度 DT => R HS = 1.2cm • 我们不能只将 1.2cm 半径的固体密度 DT 加热到 5 keV 吗? • 不行! • 聚变产量将难以控制 • 输入能量要求巨大(5000 MJ)
利用相干电磁辐射对基本量子系统进行共振激发是许多物理学实验的核心,例如原子和分子光谱、原子钟、量子信息处理等。相干激光激发有许多应用,特别是需要高精度控制量子叠加态的频率或相位时,但迄今为止它在核物理中几乎没有使用[1]。从典型的核激发能量和可用的激光光子能量之间的巨大不匹配可以理解激光激发原子核的困难。核激发已经在激光产生的等离子体中得到证实,其中相互作用是通过在强激光场中加速的电子介导的,电子在碰撞中或通过X射线范围内的轫致辐射与原子核相互作用[2]。不同的原子核已经通过同步辐射在6 – 60 keV能量范围内的跃迁上进行共振激发,寿命在纳秒到微秒范围内[3]。 Sc-45 的 12.4 keV 共振最近在欧洲 x 射线自由电子激光器 [4] 上被激发,其寿命为 0.47 秒。Th-229 原子核以其独特的低能同质异能态而闻名 [5 – 7] 。其激发能量为 8.4 eV,使核跃迁处于真空紫外 (VUV) 光谱范围内,使其可用于台式激光系统和精密光学工具的实验
Also called Dynamic Application Security Testing • Fuzzing – input data “fuzz” to try to crash software or break thru defenses • Can use AI • Automated Security Scanning (to check for known vulnerabilities) • Penetration Testing (can be both static & dynamic), usually manual, post development • Key Coding Standards: OWASP, CERT, DISA STIG, ISO Standards, e.g., 5055 • Catalogs of security漏洞和暴露:CWE,CVE,NVD,KEV
图。1。示例能量谱,代表直接驱动DT低温实验的产物,其离子温度为2 keV,而面积的密度为100 mg/cm 2。sev-sev-sev-sup子在冷DT燃料中经历散射或参与分解反应n(d,p)2n,均以面积密度的优势。通过使用中子传输代码iris3d 9来生成这种能量谱,以使中子光谱用于球形和对称分布的冷燃料层,该频率围绕球形,体积分布的中子源。
硅雪崩光二极管(APD)被广泛用作光子探测器,但是它们也可用于检测具有能量𝐸𝐸100keV的电子。尤其是,近年来对APD的使用来检测中等能量范围(10-100 KEV)的电子,特别是对于空间任务中的应用[1-3],APD耐用性与对磁场对磁场的敏感性相结合,具有吸引人的特征。虽然已经进行了一些研究使用APD来检测低能电荷颗粒[4],但使用APD来检测低(<1 keV)的能量电子是一个较少研究的领域,这是这项工作的主题。本文介绍的结果是在新型UV光检测器(Nanouv)开发的背景下产生的,并具有由垂直分配的碳纳米管制成的光(5-8]。垂直分配的碳纳米管可以使用化学蒸气沉积技术[9]生长至几百μm的长度,结果是获得高度各向异性的材料,并获得了管道方向的理想情况下,具有理想的消失密度[10,11]。由这种材料制成的光电行为可以显着降低照相电子重新吸收的可能性,这是现代紫外线探测器的不良效率的主要原因,因为光电子将直接散发到真空中,并且能够使纳米纤维ex nanotubes exul is the Mommante is pare the tube tube tube ubsum tube ubsum tub tubsum tubsum tubsum tub tub。然后通过施加的电势δ𝑉10kV加速电子,然后由位于真空管另一端的硅APD检测到长达几厘米。在图中可以看到Nanouv检测器概念的示意图1。
摘要在这项工作中,我们显示了使用第二代3D圆柱形微型探测器的低能质子束对具有治疗质量质量的低能质子束的测量。传感器属于基于硅的新型3D微型探测器设计的改进版本,其在西班牙的国家微电子中心(IMB-CNM,CSIC)制造的电极刻在硅内部。使用直径25μm的准螺旋电极和硅体积内20μm的深度使用了一种新的微技术,从而产生了良好的圆柱辐射敏感性。在国家加速器中心(西班牙CNA)的回旋子的18 MeV质子梁线上测试了这些探测器。它们被组装成内部的低噪声读数电子设备,以治疗等效的功能率评估其性能。微量测量光谱,这与沿Bragg曲线的不同深度相对应。在硅中的实验y f值从远端边缘(27.4±2.3)的入口处(27.4±2.3)kevμm -1在远端边缘(27.4±2.3)的入口中(在(27.4±2.3)的入口中。脉冲高能光谱与蒙特卡洛模拟进行了交叉检查,并获得了出色的一致性。这项工作证明了第二代3D-微型估计器的能力,以与质子治疗中临床中心中使用的速率相同的流量速率评估准确的显微标准分布。
MicroGe 探测器是一款紧凑型电冷却、无风扇、轻便的高纯锗探测器 (HPGe)。这款先进的探测器冷却时间短,可在 30 分钟内完成光谱测量,同时保留实验室级探测器的优势。这意味着伽马射线能量从约 10 keV 到几 MeV 具有出色的能量分辨率。此外,MicroGe 超高真空技术提供了无热循环探测器:MicroGe 探测器可以根据需要打开和关闭,而无需经历整个耗时的热循环直至室温。这是一项有效的省时功能,可优化 MicroGe 探测器的使用。
由5.9 t活性LXE(166 K)填充的TPC直接检测DM。wimps与LXE核的相互作用产生闪烁光(46ɣ /kev @ 178 nm)。253(顶部)和241(底部)Hamamatsu R11410-21低背景低温PMTS由Hamamatsu和Xenon合作共同开发。PMT选择在操作过程中几乎10%的PMT失败。5%高脉冲率,<5%的光泄漏。1.5 kV偏置,以避免不稳定性,例如瞬态闪光灯。对于所有PMT,在LXE温度下测量了约40 Hz的典型暗计数。
i()绝对效率是检测器测量的脉冲数除以给定时间段内的源排放总数。ii()检测器与源的固体角度越大,测得的分辨率越大。iii()固有效率与绝对效率成正比,并且与检测器所占据的固体角度成反比。iv()一个较大的分辨率(价值)允许检测器更好地区分两个非常接近的能量峰。v()虽然NAI的晶体保持在其熔点以下,但工作温度不影响设备响应。数据:NAI熔点(TL):660°C; CS-137):661 KEV(85%); T½(CS-137):30年。
本研究研究了混凝土的辐射屏蔽特性,该特性融合了稻壳灰(RHA),牡蛎壳粉(OSP)和铁粉(FEP)。四个混凝土混合样品ି一种标准混凝土(C -M25)和三个具有40%RHA(C -RHA),OSP(C -SOSP)和FEP(C -FEP)的混凝土样品,作为良好的聚集物替换率ି,以后进行了ASTM C31。通过Epixs软件的插值来计算样品的光子衰减参数。总原子交叉 - 段(σT)值按以下顺序排名:C- FEP> c -osp> c -M25> c -c -rha。c -fep具有最大的MAC值,除了662ି1332KEV的能量范围,其中C -OSP表现出较高的值。C -fep的HVL在整个光子能量上是最高的,其值分别为3.07、4.05、5.34和5.70 cm,分别为356、662、1173和1332 KEV。c -fep在整个光子能量范围内达到了最大的z eff值,这归功于其高浓度的高z元素ିfe和ca。虽然混凝土样品的值接近,但C -fep以40 mfp获得了最低的EABF和EBF因子。c -fep是三个样品中最好的混凝土混合物,在考虑的所有辐射屏蔽参数方面达到了较高的值。与利用其他废物副产品的其他屏蔽材料相比,研究中的混凝土样品显示了材料的MAC和HVL的可比值。