摘要 EMulate Therapeutics, Inc. (EMTx) 开发了一种技术,可以将随时间变化的磁场以 WAV 文件的形式传送,这些磁场在极低到低频谱的无线电频率(DC 至 22 kHz)中发射,可用于调节痛觉。这些低功率场(~30-70 毫高斯 AC RMS)通过便携式轻型可穿戴设备 (Voyager) 传送。一家专门研究经过验证的大鼠疼痛模型的合同第三方动物研究组织 (ANS Biotech, SA) 独立于作者进行了研究。我们在此报告,一组信号在减少大鼠内脏痛、神经性疼痛和炎症疼痛模型的痛觉方面表现出统计学上显著的效果。此外,去除原始信号中 6 kHz 以上的频率可增强未修改信号的止痛效果。
摘要:本文介绍了一种基于二阶 delta-sigma 调制器的紧凑型低功耗 CMOS 生物电信号读出电路。该转换器使用电压控制的基于振荡器的量化器,通过单个无运算放大器的积分器和最少的模拟电路实现二阶噪声整形。已经使用 0.18 µ m CMOS 技术实现了原型,其中包括相同调制器拓扑的两种不同变体。主调制器已针对 300 Hz–6 kHz 频段的低噪声神经动作电位检测进行了优化,输入参考噪声为 5.0 µ V rms ,占地面积为 0.0045 mm 2 。另一种配置具有更大的输入级以降低低频噪声,在 1 Hz–10 kHz 频段实现 8.7 µ V rms ,占地面积为 0.006 mm 2 。调制器电压为 1.8 V,预计功耗为 3.5 µ W。
小区在图 1 中以交叉阴影显示,其中角度范围是根据水路范围(而不是天线波束宽度)估算的,小区范围范围是根据常用的 8 kHz 采样率确定的。切萨皮克湾的一些特征可以从
图 1.雷达的电磁频谱使用情况(来自 [3])........................................................2 图 2.距离模糊的发生(来自 [3])......................................................................4 图 3.雷达回波([9] 之后).........................................................................................9 图 4.脉冲中的无线电波形(来自 [3]).........................................................................10 图 5.信号强度与目标范围(来自 [3]) ................................................................11 图 6。零到零和 3dB 波束宽度(来自 [3]) ..............................................................13 图 7。天线孔径尺寸(来自 [3]) ......................................................................14 图 8。线性阵列的零到零波束宽度(来自 [3]) .............................................................14 图 9。锥形照明(来自 [3]) .............................................................................15 图 10。大气衰减([11] 之后) .............................................................................16 图 11。波的压缩(来自 [3]) .............................................................................18 图 12。相对地面和机载平台的运动(来自 [3])......................................................................19 图 13。多普勒雷达的类型(来自 [4]).............................................................................20 图 14。消除模糊返回(来自 [3]).............................................................................24 图 15。视距(来自 [3]).........................................................................................25 图 16。PRF Vs.距离(来自 [3]).........................................................................................26 图 17。速度模糊([16] 之后).............................................................................27 图 18。最大。明确多普勒,λ =1 cm(来自 [3])..............................................27 图 19。最大值。明确多普勒,λ =3 cm(来自 [3])..............................................28 图 20。最大值。明确多普勒,λ =10 cm(来自 [3])..............................................28 图 21。具有最大值的不同 PRF 类别。目标范围(来自 [3])........................................30 图 22。由于高 PRF 而形成的无杂波区域(来自 [3]).............................................32 图 23。明确范围与高 PRF 模式下的旁瓣回波(来自 [3]) ......................................................................32 图 24。AN/APG-70(来自 [20]) ......................................................................................34 图 25。AN/APG-68(来自 [22]) ......................................................................................35 图 26。AN/APG-73(来自 [24]) ......................................................................................35 图 27。明确速度(来自 [4]) .............................................................................37 图 28。距离剖面(来自 [3]) .............................................................................................38 图 29。多普勒剖面(来自 [3]) .............................................................................................39 图 30。移除 MLC 后的距离剖面(来自 [3])................................................................39 图 31。八分之三波形([3] 之后)..............................................................40 图 32。使用 3:8 的目标检测(来自 [3]).........................................................................41 图 33。GMT 抑制(来自 [3]).........................................................................................42 图 34。近距离旁瓣杂波(来自 [3]).........................................................................42 图 35。理想模糊函数([15] 之后).........................................................................45 图 36。相干脉冲串,N=5(来自 [25]).........................................................................46 图 37。相干脉冲串的模糊轮廓图................................................47 图 38。PRF= 30 kHz N=15 脉冲占空比= 0.2..............................................48 图 39。PRF= 10 kHz N=15 脉冲占空比= 0.2..............................................48 图 40。PRF= 30 和 10 kHz 的轮廓比较 .............................................................49 图 41。PRF= 30 和 10 kHz 的椭圆比较 .............................................................49 图 42。模糊图,N=15 脉冲,PRF= 30 kHz .............................................................53
机载激光扫描 (ALS) 是一种遥感技术,基于测量从飞机发射并被地面物体反射的激光脉冲的飞行时间。过去二十年,全球定位系统、惯性导航和激光技术的进步使其快速发展。最初,飞机或卫星上的 LiDAR(光检测和测距)传感器仅在平台路径上的一维 (1D) 剖面上运行。现在,传感器配备了定位装置,能够扫描平台轨迹上的大片区域。到 20 世纪 90 年代末,小型商用传感器的脉冲重复频率约为 10 kHz [1],服务提供商才刚刚兴起。现在,领先的传感器利用多脉冲技术实现了 300 kHz 的脉冲重复频率。一些国家已经实现了完整的 LiDAR 覆盖(瑞士、丹麦),而另一些国家(芬兰、瑞典)正在进行全面测绘。
1。在6.5“颜色LCD,8颜色或8级单色,320 x 234像素显示窗口15分钟,在所有范围内显示为15分钟。深度,位置和关联时间每5 s存储24小时。以5 s,1或2分钟的间隔进行反击。2。显示模式导航,历史记录,DBS,日志,OS数据等。3。频率50和200 kHz 4。输出功率600 W RMS 5。范围量表5、10、20、40、100、200、400、800 m(可以为脚或fathoms选择)6。任何范围的准确性±2.5%。最小范围0.5 m(200 kHz),2.0 m(50 kHz)8。歧视20 m范围的每米深度5.8毫米,在200 m范围内0.58毫米9。脉冲重复率(PRR)深度(M)P/L(MS)PRR(脉冲/分钟)5/10 0.25 630 20 0.25 630 40 0.38 330 100 1.00 1.00 140 200 2.00 2.00 73 400,800 3.60 3.60 41 10。图片提前范围(M)显示窗口(分钟)5,10,20 1.8/15 40,100 8/15 200 20 400,800 30 11.接口(IEC 61162-1)输入:RMA,RMC,GLL,VTG,ZDA,GGA输出:SDDPT,SDDBT 12。警报浅水的视听警报,底部和电源故障13。传感器类型和梁宽50b-6b:28°,200b-8b:5.4°
I CAO 已制定了 GADSS 操作概念,并于 2017 年 6 月发布。GADSS 的发布将加强商用飞机机组人员和乘客以及 SAR 响应人员的航空安全。我们的想法是不再在海上丢失飞机,并能够找到飞机。2019 年版的 IAMSAR 手册包含适用于某些飞机的 GADSS 一般指导。第一阶段于 2018 年 1 月 1 日开始,频率为 37.5 kHz 的水下定位装置 (ULD) 连接到飞机飞行记录器;频率为 8.8 kHz 的 ULD 连接到飞机框架。第二阶段于 2018 年 11 月 8 日开始,用于飞机跟踪功能,即每 15 分钟自动报告一次位置。下一阶段将于 2021 年 1 月 1 日开始,实施自主遇险跟踪 (ADT) 功能,至少每分钟报告一次位置更新。
量子霍尔效应 (QHE) 的研究需要使用同轴交流电桥将量子霍尔电阻 (QHR) 与音频频率下的可计算电阻标准进行比较 [1]、[2]、[3]。此类专用电桥经过优化,可在阻抗比较中提供最高精度 [4]。然而,这种高精度只能在有限的频率带宽内实现(通常在 500 Hz 和 5 kHz 之间),并且需要对电桥进行繁琐的手动平衡。只有少数尝试使用昂贵的自动感应分压器 (IVD) [5]、[6] 来实现交流同轴电桥的自动化。本文介绍了一种新型数字辅助电桥 [7]。精确的电压比仍由电压变压器提供,但是,通过调整数字源和检测器而不是 IVD 和锁定放大器,可以在更大的带宽(100 Hz 至 20 kHz)内自动完成精确比较阻抗所需的所有平衡。
■ 以用户为中心的设计:融合了会议口译员的最新要求(欧洲机构、联合国等) ■ “闭环 - 菊花链”连接拓扑 ■ 可容纳多达 64 个翻译通道(包括现场通道) ■ 音频质量:所有 64 个通道均支持 48 kHz 音频采样率、20 Hz 至 20 kHz 频率响应 ■ 对手机 RF 干扰具有出色的免疫力 ■ 符合人体工程学的设计,具有适合视障人士的功能 ■ 6.8 英寸 TFT LCD 显示屏,显示高质量内容 ■ 7 个用于中继语言的预选按钮(1/2/3/4/5/6/7),LCD 上有激活指示 ■ 可调节激活麦克风的增益和低切 ■ 支持符合 CTIA 标准的 3.5 mm 立体声耳机 ■ 听力保护 ■ 所有物理按钮均配有盲文 ■ 支持“PnP”(即插即用) ■ 移动消息集成:主译员可以通过蓝牙从手机向所有译员单元发送文本消息
应答器测试规格 测试装置发射机 输出频率 1030 MHz / ±10 KHz 输出功率 –20 至 –100 / ±1 dBm (DC) 0 至 -100 dBm / ±1 dBm (天线) 询问 PRF 直接连接 SIF 450 ± 5 Hz 模式 S 短字 45-50 Hz 模式 S 长字 13-16 Hz 模式 5 200-225 Hz 天线连接 SIF 235 ± 5 Hz 模式 S 短字 45-50 Hz 模式 S 长字 13-16 Hz 模式 5 200-225 Hz 测试装置接收机 测量范围 1086.5 至 1093.5 MHz 测量精度 ±200 KHz 功率测量范围 47 至 64 dBm 测量精度 ±2 dB (DC) ±2 dB (天线) 灵敏度测量范围 -45 至 -87 dBm (DC) -49至 -81 dBm (天线) 测量精度 ±2 dB (DC) ±3 dB (天线) 应答效率测量范围 0 至 100%
