该团队将把他们的 PAM 工具应用于跨越十年的 PMRF 数据集,以研究布氏鲸的发声和提示率,并比较随时间和运动行为状态的提示率。工作将包括手动验证先前在数据集中识别的布氏鲸叫声。分析结果还将与已发布的提示率进行比较,以评估随时间、位置或种群的稳定性。将根据环境变量(例如一年中的时间、季节、风和波浪数据)以及其他情境数据(例如与最近的呼叫布氏鲸的距离)检查轨迹运动学。
必须先精确地预测和控制空间中的物体(例如航天器,卫星和太空站),以确保安全性和有效性。运动学是一个在3D空间中对这些身体运动的描述和预测的领域。运动学课程涵盖了四个主要主题领域:粒子运动学介绍,深入研究了两个部分的刚性身体运动学(从使用定向余弦矩阵和欧拉角的经典动作描述开始,并以现代描述仪的综述,例如Quaternions和quaternions and Classical and Classical and Modified Rodrigues参数)。课程以查看静态态度的确定结束,使用现代算法来预测和执行太空中身体的相对取向。
摘要 - 腿部机器人正在出现,并且非常需要腿部的机车,这需要精确的腿部运动动力学来执行控制命令或计划运动轨迹。本文提出了在线状态估计,以确定具有任意腿部数量的机器人的腿部运动学,其中包括腿部变换,时间偏移和腿链路长度的运动学参数。尤其是我们主张一个地面舞蹈步态,以进行运动学的决心,脚趾在地面上保持静态并充当大满贯中的静态地标。作为视觉惯性传感器通常在机器人机器人上可用,并且位于浮动基础上,我们利用有效的基于MSCKF的视觉惯性导航来估计腿部运动学。为此,我们通过分析得出了腿部运动测量的分析,并将它们与视觉惯性测量紧密融合,以更新腿的运动学和身体运动。在模拟和实验中,该方法已通过不同的四倍体进行了广泛的验证,显示出其稳健性和准确性。
人类运动学对于机器人研究非常重要,因为它在机器人的发展和进步中起着重要作用。在当前时代的机器人研究和应用的重要性不能过分强调。本文着眼于人类的手运动学,认识到人臂中关节类型的重要要素和关节数量,重点是出于流动性的自由程度。它突出了人类手的多种功能,还指出了局限性,从而更加阐明了最大化这些限制并提高人类手的移动性和能力,在这些可能性和功能中,新的任务和功能可以划定和机器人设计和机器人设计和指导以在其各个领域的生产力中促进其功能,以提高其在各种领域的生产力。根据上述新任务定义和功能的研究方向,清楚地打开了。根据上述新任务定义和功能的研究方向,清楚地打开了。
滑动是一种运动系统,其特征是独立驾驶地面车辆的平行胎面。转弯需要向每个胎面命令不同的旋转速度,这激发了内部胎面在转弯中刹车的外部胎面,相反,该胎面被外部拖动。因此,外胎面滑动,即,它的进展要小于其旋转速度给出的位移,并且内部滑动,即它的旋转速度比预期的要多。当车辆在现场转动时,理想情况下,胎面速度相反,两个胎面上都会滑动。仅当两个胎面都具有相同的旋转速度时,不会发生滑动或打滑(在直线运动期间)。可以使用轨道或几个机械链接的轮子建造滑动车辆的胎面。主要区别在于它们与地面的接触斑,轨道比车轮要大得多,从而导致摩擦更高,并且在不规则的地形上具有更好的牵引力[1]。每侧的车轮数通常在两到四个之间变化,是胎面的行为,距离更接近轨道。由于它的机械简单性和高可操作性,载人[2]和无人驾驶[3]地面车辆通常都采用了滑动运动。滑动移动机器人的现场应用包括检查[4],采矿[5],农业[6] [7],搜救[8]和林业[9]等。尽管如此,这种机制意味着高功率要求[10] [11],并使动态建模更加复杂[12] [13]。此外,在倾斜的地形上运行[14] [15],
摘要 - 表面肌电图(SEMG)中的肌肉力量和关节运动学估计1对于2实时生物力学分析,对神经肌肉刺激,肌肉动力学和4个动力学的动态相互作用3的2实时生物力学分析至关重要。深度神经网络(DNNS)5的最新进展表明,以完全自动化和可重复的方式改善生物力学肛门-6 YSIS的潜力。ho-7,生物力学分析的小样本性质和物理解释性8限制了DNN的应用。9本文提出了一种新型物理学的低镜头10对逆向学习方法,用于基于SEMG的11个肌肉力量和关节运动学的估计。这种方法无缝12将拉格朗日的运动方程和逆Dy-13 Namic肌肉模型集成到生成的对抗性净-14工作(GAN)的结构性特征解码框架(GAN)框架中,并从小样本数据中进行了15个外推估计。特定于16,拉格朗日的运动方程式被引入17个生成模型,以限制遵循物理定律的高级特征的结构化解码18。通过奖励推断估算值22和物理参考的Cons-21帐篷物理表示,旨在提高20个物理学的政策梯度,以提高20个对抗性学习效率。实验验证是在两种情况下进行的23个(即步行试验和24个手腕运动试验)。31的结果表明,与基于物理学的逆动力学相比,肌肉力和关节运动学的估计值26是公正的,其中27个表现优于选定的基准方法,其中包括28种物理学的卷积神经网络(PI-CNN),Val-29 LINA-29 LINA生成的对手网络(GAN)和Multi-Extremi-Lextreme-extreme Machine(Ml-30-Extreme Machine(Ml-30)。
最近的 3D 物体检测器利用多帧数据(包括过去和未来的数据)来提高性能。然而,他们采用的时间数据融合方法尚未充分挖掘其提高性能的潜力。现有的工作利用多帧数据,这些数据仅根据自我运动融合特定特征,并且由于巨大的计算和内存成本而无法直接应用于长序列。我们发现目前的方法不能有效地利用历史信息,包括历史预测和物体运动。基于我们的研究,我们提出了一种由历史查询和原始查询组成的新型混合查询公式。历史查询包括从历史预测和特征中获得的推断位置和内容查询,这些查询考虑了当前场景中所有物体的运动。此外,我们的方法可以简单地应用于其他类似 DETR 的模型中,以提高性能,而不会引入巨大的计算和内存成本。结果,我们的 History-DETR 在推理时间增加可忽略不计的情况下实现了显着的改进(+1.1% NDS)。
摘要:背景:运动的头部影响会导致脑损伤。通过仪器的胸罩(IMG)准确量化头运动学可以帮助识别有害影响期间的潜在脑运动。当前研究的目的是评估IMG在各种线性和旋转加速度上的有效性,以允许进行局部影响监测。方法:仪器头盔测试装置(ATD)的滴测试在一系列撞击幅度和位置进行,并同时收集了IMG测量。ATD和IMG运动学也被向前馈送到高度有限脑模型,以预测最大的主应变。结果:影响产生了广泛的头部运动学(16-171 g,1330–10,164 rad/s 2和11.3–41.5 rad/s)和持续时间(6-18毫秒),代表了橄榄球和拳击的影响。对ATD和IMG的峰值的比较表明一致性很高,峰值影响运动学的总和相关系数为0.97,预测的脑应变为0.97。我们还发现IMG和ATD测量的时间序列运动数据之间有良好的一致性,旋转速度(5.47±2.61%)的归一化均方根误差最高,旋转加速度最低(1.24±0.86%)。我们的结果证实,IMG可以在大量加速度下可靠地测量基于实验室的头运动学,并且适合将来的现场有效性评估。
摘要 — 使用脑信号进行运动运动解码 (MKD) 对于开发用于康复或假肢设备的脑机接口 (BCI) 系统至关重要。表面脑电图 (EEG) 信号已广泛应用于 MKD。然而,来自皮质源的运动解码很少被探索。在这项工作中,已经探索了使用 EEG 皮质源信号进行手部运动解码以执行抓取和举起任务的可行性。特别是,利用了运动前 EEG 片段。提出了一种基于残差卷积神经网络 (CNN) - 长短期记忆 (LSTM) 的运动解码模型,该模型利用运动前大脑活动中存在的运动神经信息。在运动开始前 50 毫秒的各种 EEG 窗口用于手部运动解码。实际和预测手部运动之间的相关值 (CV) 被用作源域和传感器域的性能指标。在传感器和源域比较了所提出的深度学习模型的性能。结果证明了使用运动前 EEG 皮质源数据进行手部运动学解码的可行性。
摘要 — 本研究提出了一种脉冲神经网络,用于根据神经数据预测运动学,从而实现准确且节能的脑机接口。脑机接口是一种解释神经信号的技术系统,可让运动障碍患者控制假肢。脉冲神经网络具有低功耗和与生物神经结构非常相似的特点,因此有可能改进脑机接口技术。本研究中的 SNN 使用泄漏积分和激发模型来模拟神经元的行为,并使用局部学习方法进行学习,该方法使用替代梯度来学习网络参数。该网络实现了一种新颖的连续时间输出编码方案,允许基于回归的学习。SNN 是在从灵长类动物运动前皮层和大鼠海马记录的神经和运动数据上进行离线训练和测试的。该模型通过寻找预测运动数据与真实运动数据之间的相关性来评估,运动前皮层记录的峰值皮尔逊相关系数达到 0.77,海马体记录的峰值皮尔逊相关系数达到 0.80。该模型的准确性与卡尔曼滤波解码器和 LSTM 网络以及使用反向传播训练的脉冲神经网络进行了对比,以比较局部学习的效果。