- AE:Pierre Baldi。自动编码器,无监督的学习和深度体系结构。在ICML关于无监督和转移学习的研讨会上,第37-49页。JMLR研讨会和会议记录,2012年。URL http://proceedings.mlr.press/v27/baldi12a/baldi12a.pdf - vae-paper:Diederik P. Kingma和Max Welling。 自动编码变分贝叶斯。 在Yoshua Bengio和Yann Lecun,编辑,第二届国际学习代表会议,ICLR 2014,2014年,AB,加拿大AB,2014年4月14日至16日,2014年会议赛道诉讼,2014年。 url http:// arxiv.org/abs/1312.6114 - vae-tutorial:Diederik P Kingma,Max Welling等。 变分自动编码器的简介。 基金会和趋势®在机器学习中,12(4):307–392,2019。 url https:// www。 nowpublishers.com/article/downloadsummary/mal-056 - 重要性 - 智慧:Yuri Burda,Roger Grosse和Ruslan Salakhutdinov。 重要的加权自动编码器。 ARXIV预印ARXIV:1509.00519,2015。 URL https://arxiv.org/pdf/1509.00519URL http://proceedings.mlr.press/v27/baldi12a/baldi12a.pdf - vae-paper:Diederik P. Kingma和Max Welling。自动编码变分贝叶斯。在Yoshua Bengio和Yann Lecun,编辑,第二届国际学习代表会议,ICLR 2014,2014年,AB,加拿大AB,2014年4月14日至16日,2014年会议赛道诉讼,2014年。url http:// arxiv.org/abs/1312.6114 - vae-tutorial:Diederik P Kingma,Max Welling等。变分自动编码器的简介。基金会和趋势®在机器学习中,12(4):307–392,2019。url https:// www。nowpublishers.com/article/downloadsummary/mal-056 - 重要性 - 智慧:Yuri Burda,Roger Grosse和Ruslan Salakhutdinov。重要的加权自动编码器。ARXIV预印ARXIV:1509.00519,2015。URL https://arxiv.org/pdf/1509.00519URL https://arxiv.org/pdf/1509.00519
[1] Jimmy Lei BA,Jamie Ryan Kiros和Geoffrey E. Hinton。层归一化。2016。Arxiv:1607.06450 [Stat.ml]。[2] Nanxin Chen等。Wavegrad:估计波形产生的梯度。2020。Arxiv:2009.00713 [Eess.as]。[3]凯瑟琳·克罗森(Katherine Crowson)。在CIFAR-10上训练扩散模型。在线。2024。URL:https://colab.research.google.com/drive/1ijkrrv-d7bosclvkhi7t5docryqortm3。[4]凯瑟琳·克罗森(Katherine Crowson)。v-diffusion。在线。2024。URL:https: / / github。com/crowsonkb/v-diffusion-pytorch/blob/master/diffusion/utils.py。[5] Ekin D. Cubuk等。randaugment:实用的自动化数据增强,并减少了搜索空间。2019。Arxiv:1909.13719 [CS.CV]。 [6] Yann N. Dauphin等。 通过封闭式卷积网络进行语言建模。 2017。Arxiv:1612.08083 [CS.CL]。 [7] Mostafa Dehghani等。 通用变压器。 2019。Arxiv:1807.03819 [CS.CL]。 [8] Yilun Du和Igor Mordatch。 基于能量的模型中的隐性产生和概括。 2020。Arxiv:1903.08689 [CS.LG]。 [9] Ian J. Goodfellow等。 生成对抗网络。 2014。Arxiv:1406.2661 [Stat.ml]。 [10] Dan Hendrycks和Kevin Gimpel。 高斯错误线性单元(Gelus)。 2023。Arxiv:1606.08415 [CS.LG]。 [11] Jonathan Ho,Ajay Jain和Pieter Abbeel。 剥离扩散概率模型。 2020。Arxiv:2006.11239 [CS.LG]。2019。Arxiv:1909.13719 [CS.CV]。[6] Yann N. Dauphin等。通过封闭式卷积网络进行语言建模。2017。Arxiv:1612.08083 [CS.CL]。[7] Mostafa Dehghani等。通用变压器。2019。Arxiv:1807.03819 [CS.CL]。 [8] Yilun Du和Igor Mordatch。 基于能量的模型中的隐性产生和概括。 2020。Arxiv:1903.08689 [CS.LG]。 [9] Ian J. Goodfellow等。 生成对抗网络。 2014。Arxiv:1406.2661 [Stat.ml]。 [10] Dan Hendrycks和Kevin Gimpel。 高斯错误线性单元(Gelus)。 2023。Arxiv:1606.08415 [CS.LG]。 [11] Jonathan Ho,Ajay Jain和Pieter Abbeel。 剥离扩散概率模型。 2020。Arxiv:2006.11239 [CS.LG]。2019。Arxiv:1807.03819 [CS.CL]。[8] Yilun Du和Igor Mordatch。基于能量的模型中的隐性产生和概括。2020。Arxiv:1903.08689 [CS.LG]。[9] Ian J. Goodfellow等。生成对抗网络。2014。Arxiv:1406.2661 [Stat.ml]。[10] Dan Hendrycks和Kevin Gimpel。高斯错误线性单元(Gelus)。2023。Arxiv:1606.08415 [CS.LG]。[11] Jonathan Ho,Ajay Jain和Pieter Abbeel。剥离扩散概率模型。2020。Arxiv:2006.11239 [CS.LG]。[12] Jonathan Ho和Tim Salimans。无分类器扩散指南。2022。ARXIV:2207.12598 [CS.LG]。[13]安德鲁·霍华德(Andrew Howard)等人。搜索MobilenetV3。2019。Arxiv:1905.02244 [CS.CV]。[14] Andrew G. Howard等。 Mobilenets:用于移动视觉应用的有效卷积神经网络。 2017。Arxiv:1704.04861 [CS.CV]。 [15] Forrest N. Iandola等。 squeezenet:较小的参数和€0.5MB型号的Alexnet级准确性。 2016。Arxiv:1602.07360 [CS.CV]。 [16] Imagenet 64x64基准(图像生成)。 用代码的论文,2024。URL:https://paperswithcode.com/sota/image-generation-generation-en-on-imagenet-64x64。 [17] Sergey Ioffe和Christian Szegedy。 批次归一化:通过减少内部协变性转移来加速深层网络训练。 2015。Arxiv:1502.03167 [CS.LG]。 [18] Diederik P. Kingma和Jimmy Ba。 亚当:一种随机优化的方法。 2017。Arxiv:1412.6980 [CS.LG]。 [19] Diederik P. Kingma和Ruiqi Gao。 将扩散目标理解为具有简单数据增强的ELBO。 2023。Arxiv:2303.00848 [CS.LG]。 [20] Diederik P. Kingma等。 变化扩散模型。 2023。Arxiv:2107.00630 [CS.LG]。 [21] Zhenzhong Lan等。 albert:一个精简版的语言表示学习。 2020。Arxiv:1909.11942 [CS.CL]。 [22] Ilya Loshchilov和Frank Hutter。 重量衰减正则化。[14] Andrew G. Howard等。Mobilenets:用于移动视觉应用的有效卷积神经网络。2017。Arxiv:1704.04861 [CS.CV]。 [15] Forrest N. Iandola等。 squeezenet:较小的参数和€0.5MB型号的Alexnet级准确性。 2016。Arxiv:1602.07360 [CS.CV]。 [16] Imagenet 64x64基准(图像生成)。 用代码的论文,2024。URL:https://paperswithcode.com/sota/image-generation-generation-en-on-imagenet-64x64。 [17] Sergey Ioffe和Christian Szegedy。 批次归一化:通过减少内部协变性转移来加速深层网络训练。 2015。Arxiv:1502.03167 [CS.LG]。 [18] Diederik P. Kingma和Jimmy Ba。 亚当:一种随机优化的方法。 2017。Arxiv:1412.6980 [CS.LG]。 [19] Diederik P. Kingma和Ruiqi Gao。 将扩散目标理解为具有简单数据增强的ELBO。 2023。Arxiv:2303.00848 [CS.LG]。 [20] Diederik P. Kingma等。 变化扩散模型。 2023。Arxiv:2107.00630 [CS.LG]。 [21] Zhenzhong Lan等。 albert:一个精简版的语言表示学习。 2020。Arxiv:1909.11942 [CS.CL]。 [22] Ilya Loshchilov和Frank Hutter。 重量衰减正则化。2017。Arxiv:1704.04861 [CS.CV]。[15] Forrest N. Iandola等。squeezenet:较小的参数和€0.5MB型号的Alexnet级准确性。2016。Arxiv:1602.07360 [CS.CV]。[16] Imagenet 64x64基准(图像生成)。用代码的论文,2024。URL:https://paperswithcode.com/sota/image-generation-generation-en-on-imagenet-64x64。[17] Sergey Ioffe和Christian Szegedy。批次归一化:通过减少内部协变性转移来加速深层网络训练。2015。Arxiv:1502.03167 [CS.LG]。[18] Diederik P. Kingma和Jimmy Ba。亚当:一种随机优化的方法。2017。Arxiv:1412.6980 [CS.LG]。[19] Diederik P. Kingma和Ruiqi Gao。将扩散目标理解为具有简单数据增强的ELBO。2023。Arxiv:2303.00848 [CS.LG]。[20] Diederik P. Kingma等。变化扩散模型。2023。Arxiv:2107.00630 [CS.LG]。[21] Zhenzhong Lan等。albert:一个精简版的语言表示学习。2020。Arxiv:1909.11942 [CS.CL]。[22] Ilya Loshchilov和Frank Hutter。重量衰减正则化。2019。Arxiv:1711.05101 [CS.LG]。[23] Preetum Nakkiran等。深度下降:更大的模型和更多数据损害。2019。Arxiv:1912.02292 [CS.LG]。[24] Alex Nichol和Prafulla Dhariwal。改进了扩散概率模型。2021。Arxiv:2102.09672 [CS.LG]。[25] Aaron van den Oord,Nal Kalchbrenner和Koray Kavukcuoglu。像素复发性神经网络。2016。Arxiv:1601.06759 [CS.CV]。[26] Prajit Ramachandran,Barret Zoph和Quoc V. Le。搜索激活功能。2017。Arxiv:1710.05941 [CS.NE]。 [27] Danilo Jimenez Rezende和Shakir Mohamed。 差异推断与归一化流量。 2016。Arxiv:1505.05770 [Stat.ml]。2017。Arxiv:1710.05941 [CS.NE]。[27] Danilo Jimenez Rezende和Shakir Mohamed。差异推断与归一化流量。2016。Arxiv:1505.05770 [Stat.ml]。
在我们看来,可以根据其数据生成过程将普遍使用的深层生成模式分为两种方法。第一种方法涉及为函数g:r d 0→r d构建估计值ˆ g,通常称为发电机。然后,从已知的D 0尺寸分布(例如标准正常或均匀)中绘制样品z,ˆ g(z)被视为估计分布中的样品。因此,ˆ g(z)的分布(或deNSISTIS)是P 0(或p 0)的间接估计器。变化自动编码器(VAE)(Kingma和Welling,2014; Rezende等,2014),正常化流量(NF)(Dinh等,2015; Rezende and Mohamed,2015)和生成的对抗性网络(GAN)(GAN-LOW-LOW-LOW。 Al。,2017年)是重要的例子。
在我们看来,可以根据其数据生成过程将普遍使用的深层生成模式分为两种方法。第一种方法涉及为函数g:r d 0→r d构建估计值ˆ g,通常称为发电机。然后,从已知的D 0尺寸分布(例如标准正常或均匀)中绘制样品z,ˆ g(z)被视为估计分布中的样品。因此,ˆ g(z)的分布(或deNSISTIS)是P 0(或p 0)的间接估计器。变化自动编码器(VAE)(Kingma和Welling,2014; Rezende等,2014),正常化流量(NF)(Dinh等,2015; Rezende and Mohamed,2015)和生成的对抗性网络(GAN)(GAN-LOW-LOW-LOW。 Al。,2017年)是重要的例子。
1. 简介 根据自主精神障碍论证(AAMD),精神障碍可以在没有大脑障碍的情况下发生,就像计算机中软件问题可以在没有硬件问题的情况下发生一样。本文认为这种论点是站不住脚的,应该被拒绝。AAMD 有两个主要的哲学目的。首先,它用于反驳反精神病学论点,即不是大脑障碍的精神障碍是不存在的(Papineau 1994 ;Kingma 2013;参见 Szasz 1960 )。其次,它用于表明“所有精神障碍本身都是大脑障碍”的笼统理论站不住脚(Wakefield 2014 a;参见 Insel 等人 2010 )。 1 据其支持者称,计算机类比的论点表明,在没有大脑功能障碍的情况下,可能会发生真正的、科学上可接受的精神障碍,而且这与物理主义以及我们最好的精神障碍哲学理论是相容的。
bianca panis 1,2,2,3†,E。NaomiVos 1,2,2,3,3,5†,IvoBarić6,Annet M. Bosch 2,3,7,Martijn C. G. J. J. Brouwers 2,8,Alberto Burlina 2,9,Alberto Burlina 2,9 14,AurélieEmpin2,15,Matthias Gautschi 16,Olga Grafakou 2,17,Stephanie Gruneywald 18,Sandra D. Kingma 2,19,Ina Knerr 20,ElisaLeão-Teles 2,21,21,DorotheaMöslinger2,22,22,Elaine Murphy 23,katrin 24,24 24,24 24. 2, 25, Sabrina Paci 2, 26, Rossella Parini 2, 27, Isabel A. Rivera 28, Sabine Scholl-Bürgi 29, Ida V. D. Schwartz 30, Triantafylia Sdogou 2, 31, Loai A. Shakerdi 32, Anastasia Skoum 2, 31, Karolina M. Stepien 33, Eileen P. Treacy 34, Susan Waisbren 14, Gerard T. Berry 14‡和M. Estela Rubio-Gozalbo 1,2,3,4,5 *‡
简介在娱乐领域,创建独特、引人注目且高质量的资产既昂贵又耗时,并且需要来自不同专业领域的越来越多的知识和技能。尽管如此,观众对资产质量的期望却不断增长。为了满足这些需求,大公司通常会聘请大型专家团队;相比之下,小型开发商往往会牺牲上述一些理想的资产属性:在竞争激烈的市场中,这是一个冒险的举动。内容生成方法和技术的最新进展使得其他替代方案能够满足这些需求(程序内容生成、机器学习、深度学习、强化学习等)(Shaker、Togelius 和 Nelson 2016;Khalifa 等人 2020;Summerville 等人 2017;Gravina 等人 2019;Kingma 和 Welling 2013;Karras、Laine 和 Aila 2018)。这些技术可以快速分析和创建高质量的内容(视觉效果、音频、关卡甚至游戏)(Rebouc¸as Serpa 和 Formico Rodrigues 2019;Torrado 等人 2019;Guzdial 和 Riedl 2018;Hoover 等人 2015;Cook、Colton 和 Gow 2017)。《全境封锁 2》(Ubisoft 2019)和《无主之地》系列(Gearbox-Software 2020)等游戏采用了其中一些方法。然而,它们在游戏行业的应用并不广泛。此外,某些类型的内容(如关卡)比其他类型的内容(如视觉效果)更有影响力,而视觉效果正是我感兴趣的内容。我建议
●什么是genai:AIGC是通过获取人类的指示,从中获得含义以及使用该目标信息来创建内容根据其知识和理解来创建的。大规模模型近年来在AIGC中具有重要意义,因为它们可以提取出色的意图,从而可以提取更好的生成结果。随着数据和模型大小的增加,模型可以学习的分布变得更加广泛,对现实变得更加真实,从而创建了更高质量和更现实的内容。本调查对随着时间的推移的生成模型的发展进行了详尽的分析,并概述了它们从单峰到多模式相互作用的AIGC中的基本元素和当前的发展。我们从非模式的角度提供了生成任务以及相关的文本和图像模型。II。 AI和生成的历史:生成AI,也称为生成建模,是人工智能(AI)的一个分支,致力于创建能够生成类似于给定数据集的新数据的模型。 该领域的历史悠久数十年,由于深度学习和神经网络的发展,近年来取得了重大进步。 以下是生成AI的历史的详细概述:2010年代见证了生成AI的重大突破,这在很大程度上是由深度学习进步所驱动的。 AutoCododers(VAE)由Kingma和Welling在2013年推出,为学习潜在数据表示提供了一个概率框架。 生成对抗网络(GAN),由Ian Goodfellow等人提出。II。AI和生成的历史:生成AI,也称为生成建模,是人工智能(AI)的一个分支,致力于创建能够生成类似于给定数据集的新数据的模型。该领域的历史悠久数十年,由于深度学习和神经网络的发展,近年来取得了重大进步。以下是生成AI的历史的详细概述:2010年代见证了生成AI的重大突破,这在很大程度上是由深度学习进步所驱动的。AutoCododers(VAE)由Kingma和Welling在2013年推出,为学习潜在数据表示提供了一个概率框架。生成对抗网络(GAN),由Ian Goodfellow等人提出。在2014年,基于对抗性训练引入了一种新颖的生成建模方法。gan由两个神经网络组成,一个发电机和一个歧视器,在最小值游戏框架中同时训练有素,在该框架中,生成器学会了生成逼真的数据,而歧视器则学会区分真实数据和生成数据。gan在生成高质量的图像,音频,文本和其他类型的数据方面取得了显着成功,从而导致艺术生成,图像合成和数据增强的广泛应用
[FEL49] William Feller。“关于随机过程的理论,对应用的尤为参考”。:1949年。URL:https:// api。Spenticscholar.org/corpusid:121027442。[SE19] Yang Song和Stefano Ermon。“通过估计数据分布梯度来生成建模”。in:神经信息处理系统的进步32(2019)。[HJA20] Jonathan Ho,Ajay Jain和Pieter Abbeel。“降级扩散概率模型”。in:神经信息处理系统的进步33(2020),pp。6840–6851。[儿子+20] Yang Song等。“通过stochastic微分方程基于得分的生成建模”。in:arxiv预印arxiv:2011.13456(2020)。[DN21] Prafulla Dhariwal和Alexander Nichol。“扩散模型在图像合成上击败了gans”。in:神经信息过程的进步34(2021),pp。8780–8794。[Kin+21] Diederik Kingma等。“变化扩散模型”。in:神经信息处理系统的进步34(2021),pp。21696–21707。[HS22] Jonathan Ho和Tim Salimans。“无分类器扩散指南”。in:arxiv预印术:2207.12598(2022)。[CHI+23] Cheng Chi等。“扩散策略:通过行动扩散进行视觉策略学习”。in:arxiv预印术:2303.04137(2023)。