背景与目的:激酶组是指基因组中编码的蛋白激酶的完整集合。最常见的翻译后修饰类型是磷酸化,超过三分之二的人类编码蛋白被蛋白激酶磷酸化。磷酸化作为蛋白质活性的重要调控因子,大大扩展了表观基因组的灵活性。因此,蛋白激酶通常通过参与细胞内途径促进细胞增殖、存活和迁移,并且在过表达或激活时与致癌作用有关。本研究的主要目标是研究激酶在致癌中的作用,并研究其作为药物在治疗各种癌症中的潜力。方法:在本综述中,通过搜索 Scopus、PubMed、Web of Science 和 ScienceDirect 数据库,选择 2010 年至 2022 年之间发表的文章并使用关键词“癌症、人类激酶组、激酶和激酶抑制剂”进行分析。结果:根据研究主题选择了 64 篇文章,由于与主要关键词缺乏相关性,排除了 11 篇文章。本研究调查了激酶在细胞增殖和人类癌症中的作用,并将激酶抑制剂与化疗或放射疗法等其他常见治疗方法相结合,可以作为癌症治疗的一种新方法和有前途的方法。结论:根据本研究的结果,激酶被认为是细胞生长和增殖的最重要组成部分之一,因此它们在过度活跃的癌症过程中发挥着重要作用。本研究表明,控制和抑制激酶家族对克服癌细胞生长具有良好的益处。关键词:人类激酶组、激酶、翻译后修饰、癌症、激酶抑制剂。
持续性骨髓瘤(MM)约占血液系统恶性肿瘤的10%,是第二大常见的血液学疾病。激酶抑制剂被广泛使用,并且已经证明了其治疗癌症的效率。在这里,为了鉴定MM治疗潜在治疗兴趣的激酶,我们研究了Kinome表达谱在大量患者中的预后影响。我们确定了36个与MM的预后价值相关的36个相关基因,并根据其表达构建了Kinome指数。Kinome指数(Ki)与MM中的预后,增殖,分化和复发有关。然后,我们测试了针对人骨髓瘤细胞系中七个靶向七个鉴定蛋白kinass(PBK,SRPK1,CDC7-DBF4,MELK,CHK1,PLK4,PLK4,MPS1/TTK)的抑制剂。所有测试的抑制剂都显着降低了骨髓瘤细胞系的活力,我们证实了其中三个对患者原发性骨髓瘤细胞的潜在临床兴趣。此外,我们证明了它们具有传统治疗毒性(包括Melphalan和Lenalidomide)的毒性的能力。这突出了它们在骨髓瘤疗法中的潜在有益作用。三个激酶抑制剂(CHK1I,MELKI和PBKI)克服了对Lenalidomide的耐药性,而CHK1,PBK和DBF4抑制剂将Melphalan耐药细胞系重新敏感到该常规治疗剂。总的来说,我们证明了激酶抑制剂可能具有治疗兴趣,尤其是在Ki定义的高风险骨髓瘤患者中。CHEK1,MELK,PLK4,SRPK1,CDC7-DBF4,MPS1/TTK和PBK抑制剂可以单独或与Melphalan或Imid代表新的治疗选择,或者代表骨髓骨髓瘤患者的难治性/复发性。
淡水龟种群的保护依赖于精准有效的监测技术。环境 DNA (eDNA) 分析是识别水生生态系统中隐蔽和难以捉摸的龟种的潜在方法。eDNA 分析有助于确定保护工作的重点区域并监测种群水平随时间的变化。本研究旨在评估一种快速 eDNA 检测方法对黄泥龟 (Kinosternon flavescens,一种在美国某些州濒临灭绝的指示种) 的有效性,该龟栖息于南德克萨斯州卡梅伦县的当地牛轭湖(例如 resacas)。一种针对物种的嵌套 PCR 检测旨在增强对黄泥龟种群的检测。我们从卡梅伦县的五个地点采集了水样以检测黄泥龟 eDNA。结果显示,在五个调查地点中有两个地点有黄泥龟存在。我们的研究表明,eDNA 监测对黄泥龟种群具有巨大潜力。该研究还提供了使用 eDNA 监测保护黄泥龟物种的见解,并为未来的研究和保护举措提供了建议。
京川储能厂在其房屋内安装了64个锂离子电池容器。额定产量为48兆瓦,额定容量为113 mWh *2,它的规模最大 *3中最大的储存厂目前在日本运营的所有储能厂,并且是Orix储能厂业务中首次开始运营的。一个储能厂能够通过将大规模的存储电池连接到电网,在剩余时充电并在短缺时将其充电,从而根据电力需求灵活调整供应。植物运营的开始允许充电和排放相当于每天使用约13,000个平均家庭 *4的电力,有助于稳定电力和电力的供应以及促进可再生能源的扩散。在运营开始后,由Orix和Kepco共同建立的Kinokawa Constor Storage LLC将成为实施机构。KEPCO集团公司E-Flow LLC将负责存储电池的运营,包括电力市场上的交易,而Orix可再生能源管理公司 *5将负责工厂的运营和维护(O&M)工作。在可再生能源中被促进作为主要动力来源,以在2050年实现碳中立性,因此根据天气条件和一天中的时间,太阳能和风力发电的发电大大波动。因此,正在引入储能厂,以履行调整电力供应和需求的作用。Orix于2022年进入了储能厂业务,并促进了全国范围内日本的储能厂的开发,同时也与市政当局合作考虑了有效利用公共土地和拥有未使用土地的公司。Orix将继续将精力集中在其可再生能源业务上(包括储能厂业务),并有助于实现脱碳社会。
4.5 保护环境 ................................................................................................................................ 27 4.5.1 基诺卡马乌湖的环境原则 .............................................................................................. 29 4.5.2 基诺卡马乌湖管理 .............................................................................................................. 30 4.5.3 雨水排水概念 .............................................................................................................. 32 4.5.4 弗里曼林地 ...................................................................................................................... 34
杰斐逊数字共享将这篇文章带给您免费和开放访问。Jefferson Digital Commons是Thomas Jefferson大学教学中心(CTL)的服务。Commons是杰斐逊书籍和期刊的展示,经过同行评审的学术出版物,大学档案馆的独特历史收藏以及教学工具。Jefferson Digital Commons允许研究人员和感兴趣的读者在世界任何地方学习并与Jefferson奖学金保持最新状态。本文已被杰斐逊数字共享的授权管理员所接受,以纳入药理学,生理学和癌症生物学教师论文。有关更多信息,请联系:jeffersondigitalcommons@jefferson.edu。
结论•在Caris队列中,在乳腺癌(263例),子宫癌(90例)和卵巢癌(87例)中检测到复发性ESR1融合。•与ERα相比,ESR1融合物是独立的,多动并且在生理上稳定的,具有更大的半寿命,并且可能足以足以具有内分泌Tx耐药性。•与没有ESR1变异的患者相比,ESR1融合阳性队列的ESR1的表达和拷贝数明显更高。这在包括乳腺癌,卵巢癌和子宫癌在内的所有适应症中都是一致的•与对照组相比,所有适应症的ESR1融合患者的预后都明显差。•ESR1融合在RET,IGF1R和FGFR3的上调观察到乳腺癌中的致癌激酶信号传导上调。•在ESR1融合病例中未观察到卵巢和子宫内膜癌的肿瘤信号传导的类似上调,这可能是由于缺乏TP53-FoxA1-轴。•靶向致癌激酶信号传导可能是ESR1融合阳性乳腺癌的一种有希望的方法。参考
激化组是对细胞或组织裂解物中激酶信号传导的研究。激素学可以帮助阐明因治疗而改变的细胞信号传导途径(即药物或状况变化),或用于比较不同的表型(即增殖与非增生性)。我们的pamstation kinomic阵列平台测量了最多196个酪氨酸或144个丝氨酸/苏氨酸激酶底物的磷酸化,这些丝氨酸/苏氨酸激酶底物印在Pamchip微阵列上。动力学和稳态的单个肽磷酸化的变化是用FITC磷酸化抗体成像的,并且信号在Bionavigator中进行了定量。然后,将改变肽的改变的肽列表通过使用Kinexus phosphonet等工具,以及使用Genego Metacore的高级途径分析和网络建模来输出并分析可能的上游激酶。
与智能握把的形状匹配可以检测到传感器视野中的一块,并报告了考虑零件对称性和握把间隙的最佳选择位置。
X射线的有效聚焦对于高分辨率X射线显微镜至关重要。称为运动型的衍射X射线光学在理论上提供了最高的焦点效率。但是,由于它们的纳米制作,它们长期以来一直无法使用。最近,使用3D激光光刻在近红外波长下实现了包括运动型在内的各种X射线光学几何形状。由于运动型的最小特征(周期)决定了解决能力,因此有一种自然的动力来寻找用较小特征的kino形式制造的kino形式。在这里,使用具有405 nm的激发波长的定制3D激光光刻设置,与以前的工作相比,它允许将运动型的最小时期一半。在扫描传输X射线显微镜图像分辨率方面提高了40%,即145 nm的截止分辨率,在700 eV时效率为7.6%。通过磁性样品的PtyChographic Imageing证明了一个重建的像素大小为18.5 nm,达到了显微镜设置的设计极限,该磁性样品的对比度强烈降低。此外,由405 nm 3D激光光刻制造的X射线镜头有可能比其他手段制成的X射线镜头便宜得多。