自 20 世纪 90 年代基因组学时代来临以来,药物发现经历了从表型方法到基于靶标的方法的转变( Swinney 和 Anthony,2011 )。人类基因组编码的大多数药物靶标都是复杂的多聚体蛋白质,通过与药物分子结合可以改变其活性( Overington 等人,2006 )。配体化合物是一种物质,如果它们在结构上互补,则能与蛋白质靶标的结合位点形成复合物以产生治疗效果(见图 1 )。在分子空间中导航以寻找具有高结合亲和力的分子化合物称为靶标特定的从头药物发现。传统上,最初通过筛选市售化合物库来识别配体,然后将其逐一与蛋白质靶标对接。这种配体的发现和优化过程可能非常耗时耗力,而且成功率较低(Keserü 和 Makara,2009 年)。计算方法可以有效地加速药物开发的几乎每个阶段。大多数计算方法都基于生成机器学习模型,例如生成对抗网络 (GAN) 和变分自编码器 (VAE)(De Cao 和 Kipf,2018 年;Li 和 Ghosh,2022 年)。然而,这些生成模型几乎不适用于针对特定目标的药物发现,因为它们仅仅学习分子分布。文献中也存在一些针对特定目标的计算方法。例如,Gupta 等人(2018 年)开发了一个生成 RNN-LSTM 模型来生成有效的 SMILES 字符串,并使用已知针对特定蛋白质靶标的活性药物对该模型进行微调。不幸的是,这种关于蛋白质结合剂的先验知识有时是无法获得的,尤其是对于新发现的靶标。Grechishnikova 的一项最新研究(2021 年)通过将靶标特异性药物设计定义为机器翻译问题,释放了这一限制。然而,这种非生成模型设计仅提供从靶标到配体的概率映射,因此无法对药物靶标的配体候选物进行采样。CogMol
工业中的过程控制(Huang et al., 2023; Liu et al., 2023; Zhang R. et al., 2023)。受益于信号处理和深度学习(DL)的进步,BCI 的一个突出子集是脑电图 (EEG)(Gao and Mao, 2021; Zhao et al., 2022; Li H. et al., 2023)。EEG 技术主要用于识别和分类运动想象 (MI) 信号,这对中风患者等行动障碍者来说是一种重要的辅助手段。EEG 的高精度、实时响应和成本效益使其有别于其他神经成像技术,如脑磁图和功能性磁共振成像(Huang et al., 2021; Mirchi et al., 2022; Tong et al., 2023)。传统的 MI-EEG 分类算法采用空间解码技术,利用从头皮记录的多通道 EEG 数据来识别运动意图 (Xu et al., 2021)。为了对来自多通道 MI-EEG 的信号进行分类,已经提出了各种方法,有效地捕捉它们的时间、频谱和空间特征 (Tang et al., 2019; Wang and Cerf, 2022; Hamada et al., 2023; Li Y. et al., 2023)。鉴于 EEG 信号的节律性和非线性特性,已经提出了几种利用小波调制和模糊熵的特征提取技术。 Grosse(Grosse-Wentrup and Buss,2008)介绍了一种结合公共空间模式 (CSP) 进行空间滤波和降低维数的方法,并辅以滤波器组技术将空间细化信号划分为多个频率子带。同样,Malan 和 Sharma(2022)开发了一个基于双树复小波变换的滤波器组,将 EEG 信号分离为子带。将 EEG 信号分割成这些子带后,通过 CSP 从每个子带得出空间特征,随后采用监督学习框架进行细化。Fei 和 Chu(2022)提出了一种利用相空间和小波变换的多层孪生支持向量机。尽管这些方法具有潜力,但它们忽略了电极之间的拓扑关系,因此需要进一步优化以提高 MI 分类准确性。认识到神经科学对脑网络动力学和神经信号传播机制的日益重视,图卷积网络 (GCN) 已被引入用于解码 EEG 信号(Wang 等人,2021;Du G. 等人,2022;Gao 等人,2022)。然后 Kipf 和 Welling(2016)将图论和深度学习结合起来以捕捉节点之间的关系。巧合的是,Hinton(2022)提出的神经传递领域的一个突破性概念前向-前向 (FF) 机制正在引起人们的关注。该机制提供了一种有效的方法来处理神经网络中的序列数据,而无需存储神经活动或暂停以进行错误传播。我们的研究旨在将 FF 机制与 GCN 相结合,用于基于 EEG 的 BCI,从而在运动意象分类方面取得重大进展。在研究中,我们提出了一种创新的 F-FGCN 框架用于 MI 分类。我们研究的突出贡献如下: