简介 — 自旋玻璃是统计物理学中的一个重要范式。除了它们在描述无序经典磁体方面的相关性 [1,2] 之外,研究还表明,优化任务(例如旅行商问题)可以映射到求解自旋玻璃系统的基态 [1,3,4] 。通过引入横向场,可以将经典自旋玻璃提升为量子模型。由此产生的量子自旋玻璃本身就构成了研究无序和挫折与量子效应相互作用的重要场所 [5] 。此外,有证据表明,可以利用量子性来简化优化任务,例如通过量子退火 [6 – 10] 。量子自旋玻璃模型的教科书例子是量子 Sherrington-Kirkpatrick (QSK) 模型,它是经典 Sherrington-Kirkpatrick (SK) 模型的推广 [11,12] 。QSK 模型已在文献中得到了广泛的分析研究 [12 – 18] 和数值研究 [19 – 30] 。虽然著名的 Parisi 解 [31,32] 为经典 SK 模型提供了完整的解,但量子 SK 模型仍有许多悬而未决的问题。
摘要。Sherrington – Kirkpatrick模型是复杂的非凸能景观的原型。在此类景观上演变的动态过程和局部旨在达到最小值的过程通常对了解最小值。在这里,我们研究淬火,即旨在减少能量的动力学。我们分析了两种不同的算法类别,单旋植物和同步动力学的收敛能量,重点是贪婪和不情愿的策略。我们提供了有限尺寸效应的精确数值分析,并得出结论,也许在违反直觉上,不情愿的算法与融合到基础状态能量密度兼容,而贪婪的策略却没有。受单旋替代和贪婪算法的启发,我们研究了两种同步时间算法,即同步螺旋和同步利用算法。这些同步过程可以使用动力学平均值理论(DMFT)和DMFT的新回溯版本进行分析。值得注意的是,这是第一次将回溯DMFT用于研究完全连接的无序模型中的动力收敛性。分析表明Sync-Greedy算法可以
这里,我们考虑一个变分族,其动机是广义群论相干态 [36] 的概念,它扩展了乘积态 Ansatz,引入了更丰富的纠缠结构。这些状态的特殊结构使我们能够引入非平凡的量子关联,同时保留有效计算变分基态的能力,最大系统规模为 N ¼ 200 个自旋。我们还开发了一种研究基态纠缠结构的方法。我们的结果显示了纠缠的体积定律,这表明尽管 QSK 模型涉及所有自旋相互作用,但纠缠一夫一妻制并不提供缩放约束。此外,这种纠缠结构也在量子信息背景下引入的一组状态中得到识别,即
Sean M. Kirkpatrick 博士 全域异常解决办公室 (AARO) 主任 USD(I&S) 要求 Kirkpatrick 博士在 2022 年初出任 AARO 负责人。他的员工和团队都称他为 K 博士,他拥有二十多年的经验,在科学技术情报 (S&TI)、S&TI 和空间政策、研究与开发、收购和运营方面拥有深厚的专业知识,专门从事太空/反太空任务领域。Kirkpatrick 博士出生于佐治亚州哥伦布的一个军人家庭。他在亚特兰大地区长大,并在佐治亚大学就读本科,学习物理。Kirkpatrick 博士也在佐治亚大学完成了他的博士学位,研究方向为掺杂稀土元素的氟化物晶体的非线性和非平衡声子动力学,目前是 UGA 的兼职教授。Kirkpatrick 博士研究生毕业后立即开始了他在国防和情报相关科学技术领域的职业生涯。 1995 年获得物理学博士学位后,他随后在伊利诺伊大学香槟分校从事博士后研究,在 AFOSR 项目下研究高爆炸药的激光诱导分子振动。1996 年,他获得了美国国家研究委员会奖学金,前往华盛顿特区的美国海军研究实验室为海军部研究新型固态激光器。1997 年,他被空军研究实验室招募,为空军建立超快激光物理实验室,研究非线性光学、新型超快光谱方法和非线性微/纳米制造技术。2003 年,他被任命为国家侦察局的项目经理,并于 2005 年转入中央情报局。2007 年,他被任命为中央情报局和国防情报局联合项目办公室的首席技术官,后来他担任国防情报局官员的部门主管。 2010 年,他被任命为国防部长办公室负责太空和情报的副助理部长的太空控制投资组合经理。2012 年,他回到国防情报局,担任负责科学和技术情报的国防情报官,与国防部负责科学和技术的国家情报经理对口,直至 2016 年。在担任 DIO/S&TI 的任期即将结束时,柯克帕特里克博士被特别任命为国家情报首席副局长,领导情报界对联合跨部门联合太空作战中心的支持。从 2016 年到目前的职位,柯克帕特里克博士担任过各种屡获殊荣的职务,包括美国战略司令部情报副局长、国家安全委员会国家安全战略主任、情报副局长和美国太空司令部的国家情报总监代表。美国太空司令部情报机构是他作为情报部门负责人建立的第五个组织。他最近的职务是担任国防情报局导弹与空间情报中心的首席科学家。
摘要:要在基因组内特定位点的空间控制生化功能,我们设计了一种合成开关,该开关在绑定到其DNA目标位点时激活。该系统使用两个CRISPR - CAS配合物将从头设计的蛋白质开关(Co -Lockr)的组件共定位到基因组中的相邻位点。共定位触发了从无活动的封闭状态到具有裸露功能性肽的活动开放状态的开关中的构象变化。我们在酵母中原型制作系统,并证明DNA结合触发了开关的激活,转录因子的募集以及下游报告基因的表达。这个由DNA触发的共洛克雷开关提供了一个平台,为工程师复杂的功能提供了一个平台,该平台只能在基因组内的特定目标位点执行,并具有在包括表观遗传调节,成像,成像和遗传逻辑通心素在内的广泛合成系统中的潜在应用。关键字:CRISPR- CAS,COS-LOCKR,蛋白质开关,遗传回路