概要:凝结物理学关键主题的本科级别介绍,旨在补充一个学期的凝结物理学介绍或增强传统固态物理学的一个学年课程。重点放在将凝结物质主题(无定形和自我类似结构,散装和微观动力学,缩放定律)与更传统的固态物理主题(晶体结构,声子和带理论)联系起来。关键主题包括与这些结构相关的散射理论的发展的粒子结构(晶体和无定形)的描述;描述包括晶格振动,传导电子,响应函数和液体中随机过程的描述(例如流体动力模式,布朗运动和聚合物动力学);在临界点附近的阶段过渡中最为突出的缩放定律,批判性和普遍性的作用的发展。本教科书专门写作是基特尔流行的固态物理学文本的杂交,旨在扩展传统的水晶物理学(包含在基特尔的前7章中),其标准(通常是非晶体)凝结物质主题以无缝的,连续的方式进行。它在其平衡的方法中是独一无二的凝结物理学方法,它以像Kittel's这样的本科教科书的风格交付。
印刷媒体签名:66/406 Innere Führung konkret / 代表德国联邦国防军军事历史和社会科学中心,由 Angelika Dörfler-Dieken 编辑;与 Meike Wanner、Markus Thurau 和 Roland-Wöhrle-Chon 合作。- 第二修订版和 ext。版本。- 波茨坦:德国联邦国防军军事历史和社会科学中心,[2024]。- 179 页:插图签名:70/036 Kittel,Manfred 毁灭的两面。:拉斐尔·莱姆金 (Raphael Lemkin) 的《联合国防止及惩治灭绝种族罪公约》和驱逐德国人 / 作者:曼弗雷德·基特尔 (Manfred Kittel)。- 柏林:Duncker & Humblot,[2023]。- 181页。(《族群驱逐史研究》第1卷)参考书目:第165-178页。- ISBN 978-3-428-18905-2 签名:70/037 第一次世界大战的历史模因:最新的历史来源流派/Pia Froese、Daniel Meis(编辑)。- 柏林:Logos Verlag Berlin,[2023]。- 155 页:插图。(文化 — 论述 — 历史;第 8 卷) ISBN 978-3-8325-5702-7 签名:70/038 Kolkilic,Fatih 论种族灭绝犯罪学 — 行动模式和解释方法/Fatih Kolkilic。- 1.版本。- 巴登巴登 :Nomos;苏黎世;圣加仑:堤坝,2024 年。- 839 页。(国际和欧洲刑法著作;第 72 卷)参考书目:第 789-811 页。- 论文,科隆大学,2023 年。- ISBN 978-3-7560-1262-6 签名:70/039 Wirth,Ulrich 第二次世界大战中的心理战。第二次世界大战:英国伪装刊物“Stiegel der Holzhauer”——通过医学宣传破坏军事实力/Ulrich Wirth。- 诺德施泰特:BoD – 按需图书,[2023]。- 152 页:插图。- 参考书目:第 147-148 页。- ISBN 978-3-7578-7977-8
拓扑结构效应()是手性自旋纹理的运输响应,因此可以用作检测和理解这些非常规磁序的强大探针。到目前为止,仅在非中心人对称系统中观察到,dzyaloshinskii-moriya相互作用稳定自旋手性,或与Ruderman – Kasuya – Kasuya – Yosida-Yosida-type相互作用的三角晶格磁铁。在这里,在Fe-Co-Ni-Mn化学复杂合金中观察到的一个明显的化学合金,其在广泛的温度和磁场上具有简单的以面部为中心的立方(FCC)结构。由于在近距离包装的FCC晶格上磁性原子的随机占用以及原子之间直接的海森贝格交换相互作用,该合金被证明具有强烈的磁性挫败感,这证明了在低温方向上出现重进入的自旋玻璃状态,并且是第一个原理计算。因此,这归因于在外部磁场下强烈的自旋挫败产生的非变化旋转手性,这与负责Skyrmion Systems的机制以及几何沮丧的磁体不同。
1. 固体物理学,C. Kittel,第 8 版,2012 年,John Wiley & Sons。2. 固体物理学,AJ Dekkar,第 1 版,2000 年。Macmillan India Ltd. 3. 固体电子设备,BG Streetman。第 7 版,2018 年,Pearson Education India 4. 基础固体物理学,M. Ali Omar,1993 年,Addison-Wesley。5. 固体物理学,MA Wahab,第 3 版,2020 年,Narosa Publishing House。 6. 高 TC 超导,CNR Rao 和 SV Subramanyam,世界科学出版公司,1989 年 7. 固体物理学,SO Pillai,第 6 版,2009 年,New Academic Science Ltd 8. 固体物理学,SL Kakani 和 C. Hemarajan,第 4 版,2005 年,Sultan Chand and Sons 9. 固体中的电子,Richard H. Bube,第 3 版,1992 年 Elsevier,10. 固体物理学,RK Puri VK Babbar 编,第 1 版,2017 年。S. Chand。
Xavier Fettweis 1,Stefan Court 1.2,UTA Crebs-Kanzow 3,Charles Amory 1,Truo Ork,Truo Ork,Constantine J. Construction 6 Fujita 10,Paul Gierz 3,Heiko Greelzer 6.11.12,Edward Hanna 13,Akihiro Hashimoto Hashimoto 5,philip Huybright 15 Chorlots借出了LTEL 1,CORLOTS LANG 1,CORLOTS LANG。长期17.18,Jan T. M. Lenaerts 19,Glen E. Liston 20,Gerrit Lohmann 3,Sebastian H. Mernild 21.24.25,您Mikaliawicz 15,Kameswarra Modali 26,Ruth H. ,Jan Streffund 3,Broke 6的Willem,Broke 6的Michale 6,Wal 6.30的Rodeer S. W.
摘要:磁性 skyrmion 是具有非平凡自旋拓扑和新颖物理特性的涡旋状自旋结构,有望成为新型自旋电子应用的基本构建块。长期以来,人们一直提出合成反铁磁体 (SAF) 中的 Skyrmion 比铁磁材料中的 Skyrmion 具有许多优势,而铁磁材料不受尺寸和有效操控的基本限制。因此,人们热切地追求在 SAF 中实验实现 skyrmion。在这里,我们展示了用洛伦兹透射电子显微镜在 SAF [Co/Pd]/Ru/[Co/Pd] 多层中在室温下观察到的零场稳定磁性 skyrmion,其中 SAF 的未补偿矩为 skyrmion 表征提供了媒介。分别通过磁场和电磁协调方法观察到了孤立的 skyrmion 和高密度 skyrmion。即使电流和磁场都被移除,这些产生的高密度 skyrmion 仍保持零场。在 SAF 中使用 skyrmion 将推动基于自旋拓扑的实用非易失性存储器的发展。关键词:skyrmion、合成反铁磁体、电磁协调方法、Ruderman − Kittel − Kasuya − Yosida 相互作用
自旋电子学领域的进步为技术提供了巨大的资源,使其在经典信息处理(如数据存储)的多个方面得到发展。现在,研究自旋电子学中尚未被广泛探索的量子信息途径至关重要。腔光磁学是一个新兴领域,它描述了磁振子与腔内电磁驻波的相互作用 [1,2]。磁振子与微波 (MW) 光子强烈相互作用,从而使得经典和量子信息处理和存储应用成为可能,这些应用具有相干操控的磁振子以及通信(光纤)和处理(超导量子比特)单元之间的上/下量子转换器 [3,4]。在本次演讲中,我们将从理论上探索经典和量子范围内微波腔中铁磁体的非线性,并评估量子信息的资源,即涨落压缩和二分纠缠 [5]。当包含所有其他磁振子模式时,我们使用非谐振子(Duffing)模型的(半)经典和量子分析对 Kittel 模式的稳态相空间进行分类。随后,我们计算了可蒸馏纠缠的非零界限,以及稳定态下混合磁振子模式二分配置的形成纠缠。在现实条件下,使用钇铁石榴石样品,可以在两个不同的光通道中通过实验获得预测的磁振子纠缠。[1] X. Zhang、C.-L. Zou、L. Jiang 和 HX Tang,Phys. Rev. Lett. 113, 156401 (2014)。[2] Y. Tabuchi、S. Ishino、T. Ishikawa、R. Yamazaki、K. Usami 和 Y. Nakamura,Phys. Rev. Lett. 113, 083603 (2014)。 [3] A. Osada、R. Hisatomi、A. Noguchi、Y. Tabuchi、R. Yamazaki、K. Usami、M. Sadgrove、R. Yalla、M. Nomura 和 Y. Nakamura,物理学家。莱特牧师。 116, 223601 (2016)。 [4] Y. Tabuchi、S. Ishino、A. Noguchi、T. Ishikawa、R. Yamazaki、K. Usami 和 Y. Nakamura,科学 349, 405 (2015)。 [5] M. Elyasi,YM Blanter,GEW Bauer,物理学家。修订版 B 101 (5), 054402 (2020)。
jbokor@berkeley.edu Spintronics领域涉及对固态设备中的旋转和电荷运输的研究。超快磁性涉及使用飞秒激光脉冲来操纵子秒时尺度上的磁性,包括无螺旋性无依赖性的全光开关。我们通过使用超快光电传输(Auston)开关使用Picsecond电荷电流脉冲结合了这些现象(图1)诱导铁磁GDFECO薄膜磁化的确定性,可重复的超快逆转[1]。使用9 ps持续时间电流脉冲,磁化强度在〜10 ps中反转,比任何其他电气控制的磁开关都要快一个数量级,并且展示了不需要旋转偏光电流或旋转旋转转移/Orbit/Orbit torques的根本新的电气开关机制。(图2)此外,开关所需的能量密度较低,投影仅需4 fj即可切换A(20 nm)3个单元。通过非平衡热激发的这种超快磁化逆转现象主要限于基于GD的Ferrimagnet,例如在图2所示的实验中使用的GDFECO合金。1和2。为了将这种快速开关与读数集成,需要具有高隧道磁力电阻(TMR)的磁性隧道连接。然而,对于使用GDFECO的设备报告的TMR值太小(≈0.6%),用于实际应用[2]。在存在面内对称性磁场的情况下,将电流脉冲应用于重金属/铁磁性薄膜异质结构。因此,切换具有独立光学脉冲的铁磁铁非常有趣,然后可以在高TMR存储器单元中作为存储层实现。We have shown how to transfer the ultrafast switching of GdFeCo to a ferromagnet (in our case Co/Pt multilayers) using Ruderman–Kittel–Kasuya– Yosida (RKKY) exchange coupling mediated HI- AOS of the ferromagnet layer driven by the HI-AOS of the ferrimagnet layer [3, 4].该技术通常适用于其他铁磁体,然后可用于使用高TMR的开关磁性结构状态进行MTJ读数。我们还表明,6-10 ps持续时间电流脉冲可用于直接和确定性地切换通过自旋 - 轨道扭矩(SOT)[5]的铁磁薄钴膜的平面外磁化。取决于相对电流