密歇根医学是针对与您情况相同的典型患者的。它可能包含非密歇根医学创建的在线内容链接,密歇根医学对此不承担任何责任。它不能取代您的医疗保健提供者的医疗建议,因为您的经历可能与典型患者不同。如果您对本文档、您的病情或治疗计划有任何疑问,请咨询您的医疗保健提供者。
体育在澳大利亚非常受欢迎,每年,全国一半以上的人口参加体育活动。1尽管这对身体和心理健康有很多好处,但膝盖受伤很常见,尤其是在旋转和联系体育方面,例如澳大利亚规则足球,橄榄球联盟,橄榄球联盟,触摸足球,篮球,足球,足球和篮球。澳大利亚的前交叉韧带(ACL)重建最高。2名伤害膝盖的运动员在年轻时患有膝盖骨关节炎的风险增加。3管理范围从简单的急救和支撑到复杂的手术重建,但应始终包括受监督的康复以及个性化的策略,以促进终身参与运动和骨关节炎的风险降低。4
机器人辅助的髋关节和膝关节置换术代表骨科手术中的尖端进步,利用机器人技术来提高精度,改善临床结果并促进内部手术。在这些机器人辅助手术中,机器人系统协助外科医生计划和执行关节置换手术,从而促进个性化的植入物定位,并优化臀部和膝盖植入物的拟合度和对齐。尽管近年来,机器人辅助髋关节和膝关节置换术引起了人们的关注,但使用Scopus数据库进行了全面的文献计量分析。该文献计量分析回顾了从1961年到2022年的Scopus数据库,以研究有关机器人辅助髋关节和膝关节置换术领域的文献。本综述总共包括满足选择标准的577篇文章。与总髋关节置换术和单室膝关节置换术相比,大多数文章更多地侧重于总膝盖置换。绝大多数文章都是由美利坚合众国(美国)和英国(英国)的研究人员和临床医生撰写的。同样,这些地区的研究人员和临床医生撰写了大多数引用数量最多的文章。在机器人辅助的髋关节和膝盖替换领域中使用Scopus进行了这种全面的文献计量分析,有可能成为研究人员,临床医生和决策者的路线图,从而促进了知情的决策,促进了促进未来研究的努力和竞技场的发展,并促进了Robotic-assed Hip的发展。
膝盖骨关节炎膝关节骨关节炎(KOA)是一种肌肉骨骼疾病,会导致膝关节1中关节软骨的进展,导致慢性疼痛和功能丧失。患者典型地表现出疼痛和僵硬,这是长时间的疼痛和僵硬。膝盖骨关节炎由于肥胖,人口衰老和缺乏练习1而在全球范围内较高且越来越多。多种合并症,例如高血压,糖尿病和心脏血管疾病,也与骨关节炎3有关。一个普通的KOA的人在一生中花费近15,000美元的相关医疗费用2。回报,这对患者和医疗保健系统产生了重大的生态影响1。
目标。对包括手术,麻醉和工程在内的操作环境足迹的详细量化很少见。我们检查了所有这些方面,以找到操作的温室气体排放。方法。我们对10名接受总膝盖置换的患者进行了生命周期评估,收集了所有手术设备的数据,清洁的能量需求以及手术室的能源使用。麻醉数据来自我们的先前研究。,我们使用生命周期评估软件将能源和材料使用的输入转换为kg Co 2 E排放中的输出,使用蒙特卡洛分析的置信区间为95%。结果。平均碳足迹为131.7公斤CO 2 E(95%置信区间:117.7-148.5 kg CO 2 E);手术是最重要的(104/131.7 kg CO 2 E,80%),麻醉的贡献较小(15.0/131.7 kg CO 2 E,11%)和工程(11.9/131.7千克CO 2 E,9%)。温室气体排放的主要手术来源是:用于消毒和蒸汽消毒和蒸汽可重复使用的设备(43.4/131.7 kg co 2 E,33%),一次性设备(34.2/131.7 kg co 2 E,26%),单独使用聚丙烯13.7/131.7 kg Co 2 E(11%)(11%)(11%)(11%)(11%) (15%)。用于能源使用,主要贡献者是:加热(6.7千克CO 2 E)和加热,冷却和风扇(4千克CO 2 E)。结论。总膝盖替换的碳足迹等于在标准的2022澳大利亚汽车中驾驶914公里,手术贡献了80%。这样的数据提供了通过审慎的设备使用,更有效的蒸汽灭菌和可再生用电以及减少一次性浪费来减少操作的碳足迹的指导。
第2部分 - 基于细胞的治疗(CBT)引言正常生物学领域不断发展,因为人们对生物学方法的兴趣日益增加,以治疗各种肌肉骨骼状况,如今,很明显,很明显,在大多数国家 /地区都有基于鲜血和基于细胞的产品的正常生物学的使用,即基于鲜血和细胞的产品。尽管出版物和数据的数量增加,但由于缺乏专业人员在患者的适应症,行政方案,甚至更多方面选择可用的选项/设备方面,这些治疗的结果仍然不确定。此外,治疗开发商和提供者必须通过报销考虑和商业挑战来解决监管问题的障碍,并在成功的正交生物学程序可为患者提供成功。所有这些风险可能会贬值这些处理的潜力和使用,并可能丧失有效的护理机会。对此做出回应,因为欧洲最大的肌肉骨骼专家埃斯卡(Esska)通过创建了矫形生物学计划(Orbit),突显了建立和组装泛 - 欧/国际协作的价值,以创建一种普通语言,创建一种统一的和负责任的声音,并在矫形器中推动了良好的标准和良好的标准。Esska Orthobiologics Initiative(Orbit)的任务/范围
重建和再生骨科手术引起了人们对制造用于植入的人造身体部位的浓厚兴趣。医学的进步和发展提高了生物材料在受损身体部位修复中的应用。在不同类型的生物材料中,生物陶瓷在假肢(一种用于替代生物部位的人造机械装置)中越来越受欢迎。生物陶瓷对人类和其他哺乳动物具有生物相容性,因此可用于修复任何未固定的部位。由于生物陶瓷与宿主组织非常相似,因此它可以促进生物体的再生反应(Dorozhkin 2010)。值得注意的是,生物陶瓷有助于最大限度地减少对金属表面的暴露,从而通过减少潜在致敏离子的来源增强用户的假肢体验(Piconi 和 Maccauro 2015)。在骨科手术中,全膝关节置换术 (TKA) 和全髋关节置换术 (THA) 的手术速度超过其他所有手术,因此成本高昂且结果持久性差 (Schwartz 等人,2020 年)。生物陶瓷植入物具有优异的生物相容性、承受更大扭矩的能力、承载能力、低密度和高耐腐蚀/耐磨性,因此在 THA/TKA 手术中对其的需求日益增加。虽然 THA 需要更换上股骨(大腿骨)并重新铺面/更换匹配的骨盆(髋骨),但 TKA 是指更换下股骨、胫骨和髌骨的患病软骨表面 (Joseph,2003 年)。由于反应性较低、早期稳定和功能寿命较长,生物陶瓷植入物显示出复制原始骨骼机械行为的潜力(Shekhawat 等人,2021 年)。从实际情况来看,陶瓷植入物的有限寿命也可能需要对全膝关节置换/全髋关节置换患者(rTKA/rTHA)进行翻修手术。此外,任何意外的机械不匹配或陶瓷碎片感染都可能导致膝关节和髋关节植入物过早失效(Shekhawat 等人,2021 年)。埃默里大学骨科外科系的一份报告
摘要:总膝盖置换(TKA)的康复通常涉及亲自治疗课程,这可能很耗时且昂贵。数字康复有可能解决这些局限性,但是这些系统中的大多数都提供了标准化的协议,而无需考虑患者的疼痛,参与和康复速度。此外,大多数数字系统在需要时缺乏人类的支持。这项研究的目的是研究个性化和适应性应用程序的人为支持的数字监测和康复计划的参与,安全性和临床有效性。在这项前瞻性多中心纵向队列研究中,包括127名患者。不希望的事件是通过智能警报系统管理的。当怀疑问题时会触发医生。通过应用程序收集了辍学率,并发症和再恢复,舞会和满意度。只有2%的再入院。通过该平台的医生行动可能避免了57次咨询(占警报的85%)。对该计划的依从性为77%,其中89%的患者建议使用该计划。个性化的人为支持的数字解决方案可以帮助改善患者在TKA之后的康复旅程,通过降低并发症和再启动率降低与医疗保健相关的成本,并改善患者报告的结果。