埃里克·努森的职业生涯一直致力于研究大脑如何处理信息、从经验中学习以及选择信息以引起注意。他早期的研究绘制了鸟类处理听觉空间信息和调节定向行为的神经通路。一项重大进展是他与加州理工学院的马克·科尼西 (Mark Konishi) 一起发现了仓鸮中脑听觉空间的地形图,该图是复杂的神经计算的结果。随后,他与斯坦福大学的同事展示了早期生活经历如何塑造创建此计算图的电路,确定了适应性可塑性的特定位置以及学习规则和机制,并发现了增加成年动物可塑性的方法。后来,他的研究转向控制选择性注意的机制。他与斯坦福大学的同事一起开发了量化鸟类空间注意力影响的行为范式,并建立了操纵前脑信号的方法,以类似注意力的方式调节感官信息。通过将计算方法与脑切片技术相结合,他展示了特定脑回路如何选择信息以进行认知决策,以及其他脑回路如何抑制分散注意力的信息。
我们对气体稀薄对共振平面非线性声波能量动力学的影响进行了数值研究。问题设置是一个充满气体的绝热管,一端由以管的基本共振频率振动的活塞激发,另一端封闭;非线性波逐渐陡化,直到达到极限环,在足够高的密度下形成激波。克努森数(这里定义为特征分子碰撞时间尺度与共振周期之比)通过改变气体的基准密度在 Kn = 10 − 1 − 10 − 5 范围内变化,从稀薄状态到密集状态。工作流体为氩气。用 Bhatnagar-Gross-Krook (BGK) 模型封闭的玻尔兹曼方程的数值解用于模拟 Kn ≥ 0.01 的情况。对于 Kn < 0 . 01 ,使用完全可压缩的一维 Navier-Stokes 方程和自适应网格细化 (AMR) 来解析共振弱冲击波,波马赫数高达 1.01 。非线性波陡化和冲击波形成与波数-频率域中声能的频谱展宽有关;后者是根据 Gupta 和 Scalo 在 Phys. Rev. E 98, 033117 (2018) 中得出的二阶非线性声学的精确能量推论定义的,代表系统的 Lyapunov 函数。在极限环处,声能谱表现出惯性范围内斜率为 −2 的平衡能量级联,同一作者在自由衰减的非线性声波中也观察到了这种现象。在本系统中,能量在低波数/频率时通过活塞从外部引入,在高波数/频率时由热粘性耗散平衡,导致系统基准温度升高。热粘性耗散率在基于最大速度振幅的固定雷诺数下按 Kn 2 缩放,即随流动稀疏程度而增加;一致地,极限环处陡峭波的最小长度尺度(对应于冲击波(存在时)的厚度)也随 Kn 而增加。对于给定的固定活塞速度振幅,光谱能量级联的惯性范围的带宽随克努森数的增加而减小,导致系统的共振响应降低。通过利用柯尔莫哥洛夫流体动力学湍流理论中的无量纲缩放定律,结果表明,基于域内最大声速幅,可以预期声学雷诺数 Re U max > 100 的谱能量传递惯性范围。
As 4 分子束 在 PBN 管中注入分子 N 2 气体,产生射频功率诱导等离子体 活性 N 2 * 和 N 物种束 主要激发分子物种:E. Iliopoulos 等,J. Cryst. Growth 278, 426 (2005) 来自 Knudsen 室的 Ga 原子束
† 里士满大学法学院助理教授。我非常感谢我的锡拉丘兹同事,特别是 David Driesen 和 Mark Nevitt,感谢他们在教职员座谈会期间的深思熟虑的评论。特别感谢 Doron Dorfman、Lauryn Gouldin 和 Robin Malloy 对初稿的深思熟虑的建议和评论。我还要感谢 Richard Schragger、Michael Livermore、Cathy Hwang、Alexandra Klass、Robin Craig、Hannah Wiseman、Sara Bronin、Corinna Lain 和 Joel Eisen 在不同阶段的评论。非常感谢我出色的研究助理 Matthew Barroner、Nikkia Knudsen 和 Jenilyn Brhel。我永远感激我的 McGuireWoods 家族,他们激发了我对可再生能源的兴趣并让我及时了解行业挑战。最后,我要向我的责任伙伴 Victoria Tucker 表示最诚挚的谢意。版权所有 © 2022 Danielle Stokes。
•“由铜(II)介导的主链N – H键的组氨酸指导芳基化/烷基” ohata,J。; MINUS,M.B。; Abernathy,M。; Ball,Z.T.,J.am。化学。Soc。2016,138(24),7472-7475•“评估若um恒的细胞内命运(II)复合物”,M.B。; Kang,M.K。; Knudsen,S。E。; W. Liu; Krueger,M。;雷德尔(M。); Ball,Z。TChem。社区。,2016,52,11685-11688。•“重新设计可逆的共价键合组件以光学检测β-手性原发性醇的EE” Minus M. B. Featherson,A.F.,Choo,S.Y.,King S.,Miller S.,Miller S. J.,Anslyn E.V.* Chem,2019,12,3003-3005。
获奖者 学术优秀奖 SN Peter H Li,第 409 师,宾夕法尼亚州费城 美国海军俱乐部 军事优秀奖 SN Adam T. Zuniga,第 949 师,新泽西州伯根菲尔德 美国军官协会奖 SN Samuel M. Knudsen,第 411 师,宾夕法尼亚州塞勒斯堡 世界战争军事勋章功绩奖 FN Thomas F. Dalessio Jr.,第 410 师,新泽西州汤姆斯河 美国联合服务组织船友奖 AA Samantha Y. Perez,第 412 师,加利福尼亚州洛杉矶 海军联盟奖 SN Rasheed Adebayo,第 949 师,德克萨斯州基林 审查指挥官 SA Mason Adamson,第 949 师,弗吉尼亚州约克镇
4。magre s,takeuchi y,Bartosch B.异种移植和猪内源性病毒。Rev Med Virol。2003; 13:311 - 29。5。niu D,Wei HJ,Lin L,George H,Wang T,Lee IH等。使用CRISPR-CAS9在猪中猪内源性逆转录病毒的不活性。 科学。 2017; 357(6357):1303 - 7。 6。 Ogle BM,Butters KA,Plummer TB,Ring KR,Knudsen BE,Litzow MR等。 物种之间细胞的自发融合会在体内产生转分化和逆转录病毒转移。 faseb J. 2004; 18:548 - 50。 7。 Paradis K,Langford G,Long Z,Heneine W,Sandstrom P,Switzer WM等。 在用活猪组织治疗的患者中寻找跨物种内源性逆转录病毒的跨物种传播。 科学。 1999; 285:1236 - 41。 8。 耐心C,Scobie L,Quinn G.猪内源性逆转录病毒 - 进展,问题和解决方案。 异种移植。 2002; 9:373 - 5。 9。 Winkler ME,Winkler M,Burian R,Hecker J,Loss M,Przemeck M等。 分析三种物种的异种移植模型中猪到人类猪内源性逆转录病毒的传播。 Transpl int。 2004; 17:848 - 58。 10。 Yoo D,Giulivi A.异种移植和猪病毒的异构传播的潜在风险。 可以兽医。 2000; 64:193 - 203。使用CRISPR-CAS9在猪中猪内源性逆转录病毒的不活性。科学。2017; 357(6357):1303 - 7。6。Ogle BM,Butters KA,Plummer TB,Ring KR,Knudsen BE,Litzow MR等。物种之间细胞的自发融合会在体内产生转分化和逆转录病毒转移。faseb J.2004; 18:548 - 50。7。Paradis K,Langford G,Long Z,Heneine W,Sandstrom P,Switzer WM等。在用活猪组织治疗的患者中寻找跨物种内源性逆转录病毒的跨物种传播。科学。1999; 285:1236 - 41。8。耐心C,Scobie L,Quinn G.猪内源性逆转录病毒 - 进展,问题和解决方案。异种移植。2002; 9:373 - 5。9。Winkler ME,Winkler M,Burian R,Hecker J,Loss M,Przemeck M等。分析三种物种的异种移植模型中猪到人类猪内源性逆转录病毒的传播。Transpl int。2004; 17:848 - 58。10。Yoo D,Giulivi A.异种移植和猪病毒的异构传播的潜在风险。可以兽医。2000; 64:193 - 203。
气溶胶沉积 (AD) 可通过气流中的粒子沉积形成致密涂层;在 AD 中,气溶胶通过收敛-发散喷嘴,以超音速粒子速度促进惯性粒子撞击所需基材。与热喷涂方法不同,AD 可以在接近室温下应用;与冷喷涂不同,在 AD 中,气溶胶通常在喷嘴上游处于大气压下。尽管之前已成功演示了 AD,但与 AD 系统中粒子运动相关的许多方面仍不太清楚。在这项工作中,我们模拟了具有平面基材的狭缝型收敛-发散喷嘴的典型 AD 工作条件下的可压缩流场分布和粒子轨迹。在检查流体流动分布时,我们发现速度和压力分布以及冲击结构对喷嘴的上游和下游工作压力很敏感。这些最终会影响粒子撞击速度。重要的是,在 AD 中,粒子阻力状态是动态的;粒子克努森数和马赫数都可以相差几个数量级。为了辅助粒子轨迹模拟,我们训练了一个神经网络,根据现有实验数据、理论极限和新的直接模拟蒙特卡罗 (DMSC) 结果预测粒子上的阻力。基于神经网络的阻力定律取决于马赫数和克努森数,与 DSMC 模拟数据相比,其一致性比预先存在的相关性更好。借助该定律,粒子轨迹模拟结果表明,对于给定的粒子密度,存在一个最佳粒子直径,以最大化粒子撞击速度。我们还发现,在 AD 中,粒子会经历与尺寸相关的惯性聚焦,即存在一个特定的粒子直径,其中粒子沉积线宽最小。小于此直径的粒子聚焦不足,大于此直径的粒子聚焦过度,因此在两种情况下都有较大的沉积线宽。使用轨迹模拟,我们还开发了一个框架,可用于评估喷嘴上游任何气溶胶尺寸分布函数的位置相关质量、动量和动能通量到沉积基质的通量。结果表明,对于实验室可达到的典型气溶胶浓度,动能通量可以接近在具有相变的对流传热中通常观察到的量级,因此 AD 中的平动能到热能的传递可能是形成致密涂层的关键因素。关键词:气溶胶沉积;收敛-发散喷嘴,惯性聚焦;惯性撞击;直接模拟蒙特卡罗
原子层沉积允许精确控制膜厚度和形式。它是高纵横比结构(例如3D NAND记忆)的关键推动因素,因为它的自限性行为比传统过程更高的合并性。然而,随着纵横比的增加,经常发生与完全保征的偏差,需要全面的建模以帮助开发新技术。到此为止,我们为存在不完整的整合性的原子层沉积过程中提供了一个模型。该模型结合了基于Knudsen扩散和Langmuir动力学的现有方法。我们的模型通过(i)通过Bosanquet公式融合了气相扩散率以及在Yanguas-Gil和Elam首先提出的建模框架中的反应可逆性,以及(ii)有效地集成在级别设定的地形模拟器中。该模型在侧面高纵横比结构中手动校准了Al 2 O 3的原型原子层沉积结果。我们研究了h 2 o步的温度依赖性,从而提取了0的活化能。178 eV与最近的实验一致。在TMA步骤中,我们观察到Bosanquet公式的精度提高,并以相同的参数集复制了多个独立的实验,这突显了模型参数有效地捕获了反应器条件。
对金属沉积过程中的MIM顶部金属剥离的研究Chang'e Weng,Tertius Rivers,Moreen Minkoff,Ron Herring,Richard Ducusin,Richard Ducusin,Jinhong Yang Yang和Joseph Chinn Qorvo,2300 Ne Brookwook Wookwwood,Ne Brookwood Parkway,Hillsboro,Hillsboro等503-615-9820关键字:MIM,过渡流,脱皮,溅射,金属,Knudsen编号,电容器泄漏相关测试失败的电容器摘要研究揭示了金属绝缘仪金属金属(MIM)顶部金属剥离和金属沉积工具之间的相关性。简介金属 - 绝缘子 - 金属(MIM)电容是基于GAA的RF技术的重要组成部分1,2,3,4。MIM电容器由底部金属板,介电层和顶部金属板组成。MIM电容器的制造涉及多个过程步骤。互连金属零层通常用作MIM底板。在该金属下方或顶部的缺陷可能导致MIM电容器缺陷4。氮化硅或氧化物被广泛用作电容器介电层,并使用PECVD过程沉积。介电层厚度和粗糙度的变化直接影响电容器性能。蒸发或溅射的Ti/pt/au金属堆栈通常用作MIM顶部金属。由于MIM顶部金属通过层间介电VIA连接到下一个上部金属层,因此在MIM金属沉积过程中形成的缺陷也可能导致电容器和通过与通过相关的参数故障。由于MIM过程的复杂性,在过程中无法在串联检测到的缺陷可以在各种过程步骤中形成。过程取决于缺陷的性质和位置,过程控制监视器(PCM)和Diesort测试可以筛选出一些有缺陷的模具,但是除非使用更具破坏性的测试,否则可能无法检测到某些缺陷。MIM电容器的缺陷通过PCM和Diesort测试是一个可靠性的问题。手机制造商和RF设备制造公司的研究都表明,MIM电容器故障是许多早期现场故障的主要原因1,3,4。在Qorvo中,开发了一种电压斜坡方法来检测MIM电容器缺陷4。评估每个单个模具,并在低压区域4中筛选出缺陷的模具。通常需要改进过程来解决相关的测试失败。在本文中,我们讨论了迪索(Diesort)在迪索(Diesort)检测到的电容器泄漏故障的研究,该泄漏失败与MIM顶部金属剥离有关。
