[2] Li K, Wang J, Wu X, et al. Optimizing Automated Picking Systems in Warehouse Robots Using Machine Learning[J]. arXiv preprint arXiv:2408.16633, 2024. [3] Tian J, Mercier P, Paolini C. Ultra low-power, wearable, accelerated shallow-learning fall detection for older at-risk persons[J]. Smart Health, 2024, 100498. [4] Xu, Q., Feng, Z., Gong, C., Wu, X., Zhao, H., Ye, Z., ... & Wei, C. (2024). Applications of explainable AI in natural language processing. Global Academic Frontiers, 2(3), 51-64. [5] Leong HY, Gao YF, Shuai J, et al. Efficient fine-tuning of large language models for Automated Medical Documentation[J]. arXiv preprint arXiv:2409.09324, 2024. [6] Soleimani M , Irani FN , Davoodi YM .楼宇暖通空调运行多目标优化:采用Koopman预测控制和深度学习的高级策略[J].建筑与环境, 2024, 248(Jan.):111073.1-111073.16。 [7] 王琳, 程颖, 项爱英, 张建, 杨华. 自然语言处理在金融风险检测中的应用[J].金融工程与风险管理, 2024, 7: 1-10。 [8] 程颖, 杨倩, 王琳, 项爱英, 张建.基于神经网络算法的商业银行信用风险预警模型研究[J].金融工程与风险管理, 2024, 7: 11-19。 [9] 李宇峰等,“结合知识图谱嵌入与深度学习的药物不良反应预测模型研究。”2024 第四届机器学习与智能系统工程国际会议(MLISE)。IEEE,2024 年。[10] 程宇峰,郭建军,龙胜,吴宇峰,孙敏,张荣军,高级
上午 8:00 – 上午 9:57 并行会议 A01 焦点会议:流体 接下来:软体撞击流体 I Sagamore 宴会厅 1–7 A02 空气动力学:常规 130 A03 主动物质 I:主动湍流 131 A04 动脉瘤 132 A05 动物飞行:飞行昆虫 I 133 A06 高雷诺数游泳 I 134 A07 生理、发声和言语 135 A08 气泡:常规 136 A09 CFD:浸入边界法 I 137 A10 粒子-湍流相互作用 I 138 A11 声学:常规 139 A12 颗粒流 I 140 A13 生物流体动力学:生理 I 141 A14 自由表面流:常规142 A15 实验技术:生物和多相测量 143 A16 流动控制:概述 144 A17 流动不稳定性:多相流和瑞利-泰勒 145 A18 喷射流 I 205 A19 非牛顿流:理论与建模 206 A20 非线性动力学:库普曼和相关方法 207 A21 湍流:湍流建模的机器学习方法 I 208 A22 多孔介质流:对流和传热 231 A23 自由表面流:自然流 232 A24 反应流:LES 和 DNS 233 A25 表面张力效应:界面现象 I 234 A26 波:非线性动力学与湍流 235 A27 涡旋动力学:概述 I 236 A28 CFD:不确定性量化和机器学习 237 A29 液滴:电场效应 238 A30 液滴:超疏水表面和多液滴相互作用 239 A31 流动不稳定性:复杂流体 240 A32 地球物理流体动力学:大气 241 A33 微/纳米流动:通道 242 A34 相变 I 243 A35 一般流体动力学:越过障碍物的流动 244
我们开发了一个框架,用于模拟量子计算机上的量度保留,千古化的动力系统。我们的方法通过将厄运理论与量子信息科学相结合,提供了经典动力学的操作理论表示。经典动力学(QECD)所得的量子嵌入可以使用二次数量的量子门对具有指数较大尺寸的经典可观察物的空间有效模拟。QECD框架基于一个量子特征图,我们介绍了该图,用于通过密度运算符在繁殖的内核希尔伯特空间上代表经典状态,h。此外,还建立了将经典可观察物嵌入到H上自偶会运算符中的,因此量子机械期望值与尖锐的函数评估是一致的。在该方案中,量子状态和可观察到的在古典系统的Koopman进化运算符的动作下单位演化。凭借H的复制属性,量子系统与基本的经典动力学相一致。为了获得量子计算优势,我们将量子系统的状态投射到与n个量子相关的2 n维张量产品Hilbert空间上的有限量级密度算子上。通过采用离散的光谱函数转换,将有限维量子系统的进化操作员分解为张量产品形式,从而通过n-通道量子O(n)的n-通道量子电路实现,而无需间通道。此外,该电路具有状态制备阶段,也是O(n)的状态制备阶段,以及大小O(n 2)的量子傅立叶变换阶段,这使得通过标准计算基础测量可观察到可观察到的预测。我们证明了这些预测的理论收敛结果,以较大的限制n→∞。鉴于这些属性,QECD提供了通过投影量子测量实现的经典可观察物的演变的一致模拟器,该量子测量能够模拟使用大小O的电路(n 2)模拟维度2 N的经典可观察物的空间。我们证明了该方案在涉及Tori上周期性和准碘振荡器的原型动力系统中的一致性。这些示例包括Qiskit AER中的模拟量子电路实验,以及IBM量子系统ONE上的实际实验。
