我们提出了一个二维硬核环路模型,是一种在Berezinskii-kosterlitz-无用的过渡时期出现的渐近自由质量连续性量子场理论的一种方式。无需微调,我们的模型可以在接近相变时在大规模阶段重现经典晶格XY模型的通用级尺度函数。这是通过在热力学极限下降低回路配置空间中的fock-vacuum位点的散发性来实现的。与传统的XY模型相比,在Berezinskii-Kosterlitz上的某些通用量在我们的模型中显示出较小的有限尺寸效应。我们的模型是欧几里得时空中渐近自由质量量子场理论的Qubit正则化的一个典型例子,并有助于了解如何在不进行微调的情况下作为分离的固定点上的相关扰动而出现渐近自由。
定义或规定了Ridgeline或Ridge-top的定义,该定义称为“关注区域”。只有在他们的会议上,他们才被指向在博尔顿镇的全面计划和小村庄战略计划中确定的这一目标。因此,我们努力将提出的开发项目的描述纳入了提出的描述中,这些开发项目表明了如何以综合计划指导的方式保留山脊/山坡。具体来说,正如全面的计划表明,我们提交了横截面图,这些图表明,拟议的房屋将位于树线后面,不会弄清山脊,并且仍将保持山脊山顶的背景。在综合计划中认识到,可以以这种方式进行发展,因为维持自然植被确实保留了山坡特征。
该药物会受到其他监测。这将允许快速识别新的安全信息。医疗保健专业人员被要求报告任何可疑的不良反应。有关如何报告不良反应的第4.8节。1。药物产品Kostaive粉的名称用于注射covid-covid-inco-in-covid-19sa-mrna疫苗2。定性和定量组成这是一个多蛋白瓶,必须在使用前重组。一根小瓶含有16剂重建后,用10 mL无菌氯化钠9 mg/ml(0.9%)溶液进行注射;参见第4.2和6.6节。一剂(0.5 mL)包含5微克Zapomeran,Zapomeran,一种covid-19自增强的使信使RNA(SA-MRNA)(封装在脂质纳米颗粒中)。Zapomeran是一种单链的5'Papped Sa-MRNA复制子,使用来自编码复制酶的相应DNA模板和SARS-COV-2祖传菌株的相应DNA模板的无细胞体外转录产生。有关赋形剂的完整列表,请参见第6.1节。3。用于注射白色至灰白色的冻干蛋糕或粉末的分散剂的药物粉末。4。临床细节4.1治疗指示可进行主动免疫,以防止18岁及以上的个体SARS-COV-2引起的COVID-19。该疫苗的使用应符合官方建议。4.2屈服和给药方法的单剂量为0.5 ml。对于以前曾接种过Covid-19疫苗接种的个体,应在最新剂量后至少5个月服用Kostaive。严重免疫功能低下的成年人可能会针对根据官方建议对严重免疫功能低下的个人进行额外的剂量(请参阅第4.4节)。
该药物会受到其他监测。这将允许快速识别新的安全信息。医疗保健专业人员被要求报告任何可疑的不良反应。有关如何报告不良反应的第4.8节。1。药物产品Kostaive粉的名称用于注射covid-covid-inco-in-covid-19sa-mrna疫苗2。定性和定量组成这是一个多蛋白瓶,必须在使用前重组。一根小瓶含有16剂重建后,用10 mL无菌氯化钠9 mg/ml(0.9%)溶液进行注射;参见第4.2和6.6节。一剂(0.5 mL)包含5微克Zapomeran,Zapomeran,一种covid-19自增强的使信使RNA(SA-MRNA)(封装在脂质纳米颗粒中)。Zapomeran是一种单链的5'Papped Sa-MRNA复制子,使用来自编码复制酶的相应DNA模板和SARS-COV-2祖传菌株的相应DNA模板的无细胞体外转录产生。有关赋形剂的完整列表,请参见第6.1节。3。用于注射白色至灰白色的冻干蛋糕或粉末的分散剂的药物粉末。4。临床细节4.1治疗指示可进行主动免疫,以防止18岁及以上的个体SARS-COV-2引起的COVID-19。该疫苗的使用应符合官方建议。4.2屈服和给药方法的单剂量为0.5 ml。对于以前曾接种过Covid-19疫苗接种的个体,应在最新剂量后至少5个月服用Kostaive。严重免疫功能低下的成年人可能会针对根据官方建议对严重免疫功能低下的个人进行额外的剂量(请参阅第4.4节)。
9. (自 2023 年起) 波兰国家科学中心 2021/42/A/ST2/00356 相对论因果关系和信息处理项目参与者。 8. (2020–2022) 波兰科学基金会 MAB/2018/5 国际量子技术理论中心项目参与者。 7. (2018–2020) 波兰国家科学中心 2015/18/E/ST2/00327 基于物理定律的通信安全,应对窃听和黑客攻击项目参与者。 6. (2011–2013) 波兰国家科学中心 N N202 343640 量子理论代数公式中的几何结构和动力学项目首席研究员。 5. (2008–2011) 波兰科学与高等教育部 182/N QGG/2008/0 量子引力与量子几何奖学金获得者。 4. (2007–2010) 波兰科学基金会 MISTRZ 相对论量子与经典问题奖学金获得者。 3. (2010) 欧洲科学基金会交流访问奖学金 QGQG 2706。 2. (2007) 欧洲科学基金会短期访问奖学金 QGQG 1955。 1. (2002–2010) 华沙大学物理学院科学奖学金。
在两个空间维度中,准长范围超导的熔化是通过涡流 - 抗抗反应对的增殖和解开,这是一种被称为Berezinskii-Kosterlitz-kosterlitz-thoubles-thouble(bkt)的现象。尽管已经在大量测量中观察到了这种过渡的特征,但是这些实验通常是复杂的,模棱两可的,无法解决涡流解开过渡的丰富物理。在这里,我们表明局部噪声磁力测定法是一种灵敏的无创探针,可以提供有关比例依赖性涡流动力学的直接信息。尤其是通过解决磁噪声的距离和温度依赖性,可以实验研究涡流气体的重新归一化组流程,并跟踪原位涡旋的发作。特别是,我们预测(i)噪声对温度的非单调依赖性和(ii)局部噪声几乎与BKT转变处的样品 - 探针距离无关。我们还表明,噪声磁力测定法可以区分高斯超导订单参数的流量与拓扑涡流闪光,并可以检测到未结合的涡流的出现。BKT过渡时的弱距离依赖性也可以用来将其与准粒子背景噪声区分开。我们的预测可能在许多非常规超导体的实验范围内。
摘要 本文探讨了人工智能 (AI) 在增强公司治理中的环境、社会和治理 (ESG) 报告方面的变革潜力。人工智能可以通过自动化数据收集、确保准确性以及实现实时处理和预测分析来彻底改变传统的 ESG 报告。这种整合支持全面、及时和主动的可持续发展报告方法,满足利益相关者和监管机构对透明度和问责制日益增长的需求。人工智能在 ESG 报告中的主要优势包括通过更好的数据质量改进决策、对可持续发展实践的预测性洞察以及通过动态报告格式增强利益相关者的参与度。然而,需要解决技术障碍、道德问题、隐私问题和监管复杂性等挑战。本文建议开发强大的数据治理框架,采用合乎道德的人工智能实践,并制定支持性
>使用TestRail,Slack,Email和CI/CD集成增强了测试API自动化项目; >使用Jmeter,Akamai和自定义工具执行功能,性能,压力和负载测试; >在一个出色的分布式团队中支持和开发的Dropwizard项目;
在追求超导性的较高临界温度时,在二维(2D)中的电子带和Van Hove奇异性(2D)中已成为一种潜在的方法,可以根据含义的期望来增强Cooper配对。然而,这些特殊的电子特征抑制了超级流体的超导系统中的超级流体施工,因此在二维超导系统中的过渡(BKT)过渡,导致出现了由于超导导性引起的超导电性流量引起的显着pseudogap法律。在强耦合方案中,发现超流动性的一个与超导差距成反比,这是有助于强烈抑制超级抑制超级流动性的因子。在这里,我们揭示了上述限制在2D超导电子系统中避免使用,具有很强的配对强度与具有较弱的电子配对强度的深带相结合的电子带。由于多播的影响,我们演示了一种类似筛选的机制,该机制绕过了抑制超级流体的抑制。我们报告了通过对两个频率启示元之间的映射耦合调谐和成对的交换耦合,报告了BKT过渡温度大量增强的最佳条件,并大量增强了伪制度。
传记 1999 年,Ir. G. (Gertjan) Koster 教授获得博士学位,论文题目为“脉冲激光沉积人工层状复合氧化物”。同年,他移居美国,加入斯坦福大学 Geballe 先进材料实验室的 Kapitulnik-Geballe-Beasley (KGB) 小组。2007 年,他加入了特温特大学 MESA+ 纳米技术研究所的无机材料科学小组,自 2019 年 12 月起担任该研究所的正教授。2014 年,他成为温哥华 QMI-UBC 的客座教授,自 2018 年起,他担任斯洛文尼亚 Joseph Stephan 研究所先进材料系 K9 的客座教授。他的研究重点是原子工程复合(纳米)材料的结构-性能关系,特别是薄膜陶瓷氧化物。对于薄膜合成,他开发了第一个时间分辨的 RHEED 系统,在脉冲激光沉积期间以高达 100 Pa 的高压运行。这项工作促成了一家初创公司的成立,他是该公司的顾问和讲师。目前的研究包括人造材料的生长和研究、缩小尺寸(纳米级)材料的物理学、金属-绝缘体转变和原位光谱表征。应用领域包括绿色 ICT 的功能材料、神经形态计算、氧化物与 CMOS 的集成、使用 X 射线光谱或 STEM-EELS(例如电池、催化)进行氧化物界面操作研究的模型系统。其他经验: