https://doi.org/10.26434/chemrxiv-2023-klv3z orcid:https://orcid.org/000000-0002-2637-9974 content contem content content content notect content contem consemrxiv note contem-chemrxiv consemrxiv note content consemrxiv note content。许可证:CC BY-NC-ND 4.0
Vaidya和A.-c。 Romain,(2017年)使用电子鼻和化学分析仪的MSW气味定量:预测能力和健壮模型开发的相对探索,ISOCS/IEEE国际嗅觉和电子鼻子(ISOEN),蒙特利尔,QC,QC,加拿大,加拿大,1-3,1-3,
摘要:对实现更可持续制造和循环经济模型的高性能生物材料的需求正在显着增长。卡夫木质素(KL)是一种丰富且功能高的芳香/酚类生物聚合物,是纸浆和造纸工业的主要侧产品,以及最近的第二代生物填充物。在这项研究中,将KL纳入了基于双苯酚A(DGEBA)的二甘油乙醚(DGEBA)和胺固化剂(Jeffamine D-230)的玻璃状环氧系统中,该系统被用作固化剂的部分替换和DGEBA前固化剂和DGEBA前添加剂或反应性添加剂。A 由原始的(未修饰)KL替换为14 wt。%,而与Neat Epoxy Polymer相比,高达30 wt的KL-氧基复合材料具有相似的热力学特性,并且具有相似的热力学特性,并且具有相似的热力学特性,并且具有显着增强的抗氧化特性。 此外,还研究了KL粒径的效果。 球铣削的牛皮木蛋白(BMKL,10 µm)和纳米林蛋白(NLH,220 nm)在球铣削和超声化后获得,并在同一环氧系统中作为添加剂进行了研究。 显着改善的分散体和热机械特性,主要用纳米林蛋白获得,这些纳米林蛋白表现出完全透明的木质素 - 环氧复合材料,张力强度较高,储存模量和玻璃转变温度,即使在30wt。%的载荷下也是如此。 最后,KL木质素是糖基化(GKL)并用作基于生物的环氧前聚合物,可达到高达38 wt的基于化石的DGEBA的38 wwt。%替代。 GKL复合材料表现出改善的热机械性能和透明度。由原始的(未修饰)KL替换为14 wt。%,而与Neat Epoxy Polymer相比,高达30 wt的KL-氧基复合材料具有相似的热力学特性,并且具有相似的热力学特性,并且具有相似的热力学特性,并且具有显着增强的抗氧化特性。此外,还研究了KL粒径的效果。球铣削的牛皮木蛋白(BMKL,10 µm)和纳米林蛋白(NLH,220 nm)在球铣削和超声化后获得,并在同一环氧系统中作为添加剂进行了研究。显着改善的分散体和热机械特性,主要用纳米林蛋白获得,这些纳米林蛋白表现出完全透明的木质素 - 环氧复合材料,张力强度较高,储存模量和玻璃转变温度,即使在30wt。%的载荷下也是如此。最后,KL木质素是糖基化(GKL)并用作基于生物的环氧前聚合物,可达到高达38 wt的基于化石的DGEBA的38 wwt。%替代。GKL复合材料表现出改善的热机械性能和透明度。使用NMR,TGA,GPC和DLS技术对所有木质素进行了广泛的表征,以相关并证明环氧聚合物表征的结果。
摘要:木质素是一种具有许多有希望的特性,对聚合物混合物有益。这项工作的主要目的是研究木质素与聚乳酸(乳酸)混合的加工性,兼容性和可回收性。将两种不同的商业牛皮木质蛋白和一个酚类有机溶胶木质素与聚(乳酸)以各种重量百分比混合,靶向高木质素含量(30、50和70 wt%)。获得的混合物通过融合沉积建模用于增材制造。所有获得的材料均通过拉伸试验,热重分析,不同的扫描量热法和31 p NMR的透度表征。通过重新排列多达四次,评估了聚合物混合材料的可回收性,并评估了它们的可打印性。结果表明,该材料在多达三个周期中保留了其机械性能,其拉伸强度降低了30%。酚类有机溶质木质素在更广泛的木质素含量上表现出更好的可打印性,同时保持相似的热和机械性能。关键词:基于生物的材料,回收,聚(乳酸),木质素,混合■简介
在此,采用基于工业溶剂分馏的 LignoBoost 牛皮纸木质素 (KL) 的二元阴极界面层 (CIL) 策略来制造有机太阳能电池 (OSC)。KL 中均匀分布的苯酚部分使其能够与常用的 CIL 材料(即浴铜灵 (BCP) 和 PFN-Br)轻松形成氢键,从而产生具有可调功函数 (WF) 的二元 CIL。这项工作表明,二元 CIL 在具有大 KL 比兼容性的 OSC 中工作良好,在最先进的 OSC 中表现出与传统 CIL 相当甚至更高的效率。此外,由于 KL 阻断了 BCP 和非富勒烯受体 (NFA) 之间的反应,KL 和 BCP 的组合显著提高了 OSC 的稳定性。这项工作提供了一种简单有效的方法,通过使用木质材料实现具有更好稳定性和可持续性的高效 OSC。
标题:大脑的畸形和通过伴侣的伴侣功能受损1†,Piere Rodriguez-Aliaga 2†,Weimin Yuan 3†,Lena Franken 1,Kamil Zajt 4,Dimah Hasan 5,Dimah Hasan 5,Ting-Tang 2,Ting-Tang 2,Elisabeth andReas andReas andReas,Andres and and s. Ula Knopp 1,Eva Lausberg 1,Jeremias Krause 1,Zhang 4,Pamela Trapane 10,Riley Carroll 10,Martin McClatchey 11,Lisa Fry 13,Andrew E. 14,Katherine A Blood 16,Jean-Madeleine De Sainte Agathe 17,Charles Pergan 18 9,Gorančuturilo20,Borut Peterlin 19,Karin Diderich 21,Haley Streff 22,Laurie Robak 22,Laurie Robak 22,Renske Oegema Oegema Oegema 23,Ellen Van Binsbergen 23,Ellen van Binsbergen 23,John Herriges 24,Carol j. Saund,239 ,HannsLochmüller31,Stefanie Meyer 31,Alberto Aleman 31,Kiran Polavarapu 31,32,Gael Nicolas 33,34,Alice Goldenberg 33,Lucie Guyant 33,Kathleen Pope 35 Decondt 41,Wim Van Paesschen 42,43,Claudine Rieubland 44,Claudia Poloni 44,Guipponi 44,Marine Meussen,47和J. Jansen 48,Jessica Rosenblum 47,Tobias B.瓦格纳(Wagner)51,马丁·威斯曼(Martin Wismann),埃格·托马斯(Egger Thomas),51马蒂亚斯·贝格曼(Matthias Begemann)1,安德烈亚斯·罗斯(Andreas Roos)31,52,53,马丁·哈斯勒(MartinHäusler)29,38,蒂姆·安格勒(Tim Schedl)54,马可·塔塔格利亚(Marco Tartaglia),马尔科·塔塔格利亚(Marco Tartaglia)14,朱利安娜·布雷默(Juliane Bremer),朱利安·布雷默(Juliane Bremer)4,史蒂芬·帕克3 *
出版物 Liebing AD, Rabe P, Krumbholz P, Zieschang C, Bischof F, Schulz A, Billig S, Birkemeyer C, Pillaiyar T, Garcia-Marcos M, Kraft R, Stäubert C (2025) 琥珀酸受体 1 信号转导相互依赖于亚细胞定位和细胞代谢。 FEBS J doi:10.1111/febs.17407 Röthe J, Kraft R , Ricken A, Kaczmarek I, Matz-Soja M, Winter K, Dietzsch AN, Buchold J, Ludwig MG, Liebscher I, Schöneberg T, Thor D (2024) 小鼠粘附 GPCR GPR116/ADGRF5 在胰岛调节中具有双重功能生长抑素释放和胰岛发育。共同生物学7:104。 Kaczmarek I、Wower I、Ettig K、Kuhn C、Kraft R、Landgraf K、Körner A、Schöneberg T、Horn S、Thor D (2023) 使用创新的 RNA-seq 数据库 FATTLAS 识别参与脂肪组织功能的 GPCR。iScience 26:107841。Peters A、Rabe P、Liebing AD、Krumbholz P、Nordström A、Jäger E、Kraft R、Stäubert C (2022) 羟基羧酸受体 3 和 GPR84 – 两种在先天免疫细胞中具有相反功能的代谢物感应 G 蛋白偶联受体。Pharmacol Res 176:106047。 Rabe P、Liebing AD、Krumbholz P、Kraft R、Stäubert C (2022) 琥珀酸受体 1 抑制对谷氨酰胺上瘾的癌细胞的线粒体呼吸。Cancer Lett 526:91-102。Peters A、Rabe P、Krumbholz P、Kalwa H、Kraft R、Schöneberg T、Stäubert C (2020) 羟基羧酸受体 3 和 G 蛋白偶联受体 84 的自然偏向信号传导。Cell Commun Signal 18:31。Röthe J、Kraft R、Schöneberg T、Thor D (2020) 探索原发性胰腺胰岛中的 G 蛋白偶联受体信号传导。Biol Proced Online 22:4。 Stegner D, Hofmann S, Schuhmann MK, Kraft P, Herrmann AM, Popp S, Höhn M, Popp M, Klaus V, Post A, Kleinschnitz C, Braun A, Meuth SG, Lesch KP, Stoll G, Kraft* R , Nieswandt* B (2019) Orai2 介导的电容性 Ca 2+ 条目的丢失具有神经保护作用急性缺血性中风。笔画 50:3238-3245。 Röthe* J、Thor* D、Winkler J、Knierim AB、Binder C、Huth S、Kraft R、Rothemund S、Schöneberg T、Prömel S (2019) 粘附 GPCR 卵白蛋白参与调节胰岛素释放。 Cell Rep 26:1573-1584。Kraft R (2015) 神经系统中的 STIM 和 ORAI 蛋白。Channels (Austin) 9:235-243。Michaelis M、Nieswandt B、Stegner D、Eilers J、Kraft R (2015) STIM1、STIM2 和 Orai1 调节钙池操纵的钙内流和小胶质细胞的嘌呤能激活。Glia 63:652-663。Kallendrusch S、Kremzow S、Nowicki M、Grabiec U、Winkelmann R、Benz A、Kraft R、Bechmann I、Dehghani F、Koch M (2013) G 蛋白偶联受体 55 配体 L-α-溶血磷脂酰肌醇在兴奋毒性损伤后发挥小胶质细胞依赖性神经保护作用。 Glia 61:1822-1831。Wegner F、Kraft R、Busse K、Härtig W、Leffler A、Dengler R、Schwarz J(2012 年)分化的人类中脑衍生神经祖细胞表达含有 α2β 亚基的兴奋性士的宁敏感甘氨酸受体。PLoS One 7:e36946。
2023最佳系统论文决赛入围RSS 2023 2023学生(Chuning Zhu)授予亚马逊科学枢纽奖学金2019 UC Berkeley提名Google PhD奖学金2019年Neurips奖学金2019年Neurips 2019年Neurips 2019 Meta-Learning Worker在2018年最佳审查员2018年Robot 2018(Corme)2018(CORM)的最佳审查员(CORM 2018)(ICM)(CORM 2018)(ICM) 2018年ICML 2018 LLARALA研讨会2016年国家科学基金会研究生研究奖学金2016年国防科学与工程研究生研究生奖学金(拒绝)2016年UC Berkeley杰出GSI奖2015 EECS Berkeley Department Alverty thress Award 2011 Edward Kraft Kraft 2011 Kraft Kraft 2009 Kvpy Fallows,2016年,2016年国防科学与工程研究生奖学金2016年国防科学与工程研究生奖学金(拒绝)2016年国防科学与工程研究生奖学金(拒绝)2016年国家科学研究生研究生研究生研究生研究生研究生奖学金(拒绝)。印度