锗-高锡含量锡合金的能带结构临界点能量 作者:Dominic Imbrenda 应用物理快报 (APL) | 2021 年 10 月 快速大规模地跨空中、太空和网络领域对动态目标的指挥与控制 作者:Jinhong K Guo、Jennifer Lautenschlager、David Van Brackle、Val Champagne 第 26 届国际指挥与控制研究与技术研讨会 | 10 月 25-29 日 常见视频游戏平视显示器与现实世界设计在目标定位和识别方面的比较 作者:Gina Notaro、Raquel Galvan-Garza、Jim Allen、Matthias Ziegler 等人 2021 年 IEEE 混合和增强现实附加国际研讨会(ISMAR-Adjunct)|十月 嘈杂电流前庭刺激对功能性移动和手动控制学习的影响,使感觉运动任务无效 作者:Raquel Galvan-Garza 前沿神经科学杂志 基于去中心化强化学习的多四旋翼飞行器群集的实现 作者:Donald J Bucci、Christian Speck 等 IEEE Access | 十一月 具有亚线性动态遗憾和拟合的分布式在线凸优化 作者:Donald J Bucci 阿西洛马信号、系统和计算机会议 | 十一月 第十部分:具有概率保证的基于搜索的测试生成的随机算法系列 作者:Mauricio Castillo-Effen 计算研究存储库 (CoRR) | 十月 20 日 迈向值得信赖的人工智能和自主的道路 作者:Mauri
7月18日,星期二,上午8点至下午5点,贝塞斯达万豪酒店,5151 Pooks Hill Rd。哈佛医学院的医学教授,以及达纳 - 法伯癌症研究所的Lebow骨髓瘤治疗学研究所和Jerome Lipper多发性骨髓瘤中心。他是美国癌症学会临床研究教授的多丽丝·杜克(Doris Duke)杰出的临床研究科学家,并且是AACR监管科学与政策小组委员会的主席。从约翰·霍普金斯医学院(Johns Hopkins Medical School)毕业后,他在约翰·霍普金斯医院(Johns Hopkins Hospital)接受了内科培训,然后在达纳 - 法伯癌症研究所(Dana-Farber Cancer Institute)完成了血液学,医学肿瘤学和肿瘤免疫学培训。在过去的四十年中,他将实验室和临床研究集中在多发性骨髓瘤上。他已经在其微环境中开发了肿瘤的实验室和动物模型,既可以鉴定新靶标和对新的靶向疗法的验证,然后将这些研究迅速转化为临床试验,最终导致FDA批准的新型靶向和免疫疗法的批准。他用于识别和验证肿瘤细胞及其环境中的靶标的范式改变了骨髓瘤疗法,并显着改善了患者的预后。血液学恶性肿瘤的分裂II监督产品的药物开发,用于治疗多发性骨髓瘤,淋巴瘤和慢性淋巴细胞性白血病。美国食品和药物管理局医学博士Nicole Gormley nicole Gormley,第5届会议的主持人,医学博士Nicole Gormley,是美国食品和药物管理局血液学恶性肿瘤II的部门主任,并担任卓越肿瘤学中心肿瘤学端点发展的代理副总监。 在担任肿瘤学终点发展的代理副主任时,戈姆利博士为与肿瘤学早期终点发展有关的科学和政策努力提供了指导,协调和监督。 Gormley博士于2011年加入FDA,此前曾担任临床审查员和多发性骨髓瘤临床团队负责人。 在这些角色中,戈姆利博士积极地与多发性骨髓瘤社区互动,以开发新的终点,包括最小的残留疾病以及解决种族差异的方法。 Gormley博士在国立卫生研究院完成了血液学和重症监护研究金培训,并在加入食品药品监督管理局之前曾担任国家心脏,肺和血液研究所的副临床主任。nicole Gormley,第5届会议的主持人,医学博士Nicole Gormley,是美国食品和药物管理局血液学恶性肿瘤II的部门主任,并担任卓越肿瘤学中心肿瘤学端点发展的代理副总监。在担任肿瘤学终点发展的代理副主任时,戈姆利博士为与肿瘤学早期终点发展有关的科学和政策努力提供了指导,协调和监督。Gormley博士于2011年加入FDA,此前曾担任临床审查员和多发性骨髓瘤临床团队负责人。 在这些角色中,戈姆利博士积极地与多发性骨髓瘤社区互动,以开发新的终点,包括最小的残留疾病以及解决种族差异的方法。 Gormley博士在国立卫生研究院完成了血液学和重症监护研究金培训,并在加入食品药品监督管理局之前曾担任国家心脏,肺和血液研究所的副临床主任。Gormley博士于2011年加入FDA,此前曾担任临床审查员和多发性骨髓瘤临床团队负责人。在这些角色中,戈姆利博士积极地与多发性骨髓瘤社区互动,以开发新的终点,包括最小的残留疾病以及解决种族差异的方法。Gormley博士在国立卫生研究院完成了血液学和重症监护研究金培训,并在加入食品药品监督管理局之前曾担任国家心脏,肺和血液研究所的副临床主任。
会议主持人Jinyue Yan(联合主席)萨特·加尼(Saud Ghani)教授(联合主席)组织委员会教授Hailong li教授Elsadig Mahdi Ahmed Ahmed Saad Haoran Zhang博士Haoran Zhang博士Waled Mukahal博士Mingkun Jiang Mingkun Jiang Pr. Pratheesh Ben Mr. Dayin Chen博士Zhiling Guo博士Junxiang Zhang Zhang Junwei Liu秘书博士X. Shi博士Y.国际科学委员会教授Jinyue Yan(主席),总编辑,应用能源教授Jianzhong Wu教授(联合主席),主持人,主持人,Zita Vale教授(联合主席)教授,主席,共同编辑,辅助Energy Energy Prified Energy Energie desiaw-kiang Chou(Siaw-Kiang Chou),Siaw-Kiang Chou(Siaw-Kiang Chou) (联合主席),高级编辑,应用能源A. Hammond,UK G. Strbac,UK H. B.Sun,中国H. G. Jin,中国H. L. Li,瑞典H. M. Xu,英国J. Hetland,挪威J. Milewski,波兰J. Whalen,加拿大Sun,中国H. G. Jin,中国H. L. Li,瑞典H. M. Xu,英国J. Hetland,挪威J. Milewski,波兰J. Whalen,加拿大Z. Wu,英国K. Hubakek,荷兰K. Yoshikawa,日本L. Kazmerski,美国M. T. T. T. T. Shamim,美国X. G. Li,加拿大X.
评审团评价摘录该设计的特点是明确的设计意愿与开放性、城市规划秩序与创造身份的简洁性之间总体平衡的态度。三座建筑的平面图采用多边形,清晰地组织了不同的城市规划要求和异质城市空间的功能框架条件,评审团强调了这一原则是“化圆为方”。这些建筑的地址布局均衡,具有象征意义,从各个角度看都显得纤细而有活力。这为所需的区域中心在远处和地面上创造了一种身份。两座比例和结构和谐的塔楼的多边形基本形状因此被凸显为特别具有身份认同感的形式,特别是因为整个建筑整体很好地融入了异构的建筑环境,而没有试图参考特定的结构,并开辟了有趣的视角。它还具有良好的通风和良好的风舒适度。值得欢迎的是,图形和正面不构成背面。作为塔楼之间的第三个元素的“社区中心”在第二阶段得到了进一步的简洁发展,并与区域体育设施建立了良好的结构和空间关系,同时避免过分强调向北的通道。除了适当的渗透性之外,这座代表整个建筑群的第三座建筑还能够以其慷慨和大多合理的规划来说服周围邻居。讨论了设计的高度发展。由于其纤细和良好的比例,评审团认为其当前的高度与城市环境中的高点具有明显的相似性。该办公大楼拥有易于使用、灵活的楼层平面图,可供单一或多租户使用,并拥有迷人的外部景观,加上独立的外观,具有良好的市场竞争力。这里,“第五角”是一个有趣的“附加”。评审团还认可了住宅平面图中合适且有吸引力的公寓的潜力。总体而言,评审团高度评价该设计,认为它对竞赛做出了杰出贡献,特别称赞了它的结构强度、灵活性和连贯的整体概念。
(R)................................................2nd................... 2190 25B Smith, Andy (DFL)........................................ 5th.............................. 9249 35A Stephenson, Zack (DFL)................................ 5th.............................. 5513 22B Stier, Terry (R)................................................2nd..........................7-9010† 15A Swedzinski, Chris (R).......................................2nd................................ 5374 54A Tabke, Brad (DFL)............................................. 5th..............................7-9001† 15B Torkelson, Paul (R).........................................2nd................................ 9303 16A Van Binsbergen, Scott (R) ................................2nd..........................7-9010† 38B Vang, Samantha (DFL)........................................ 5th.............................. 3709 52B Virnig, Bianca (DFL)................................................. 5th............................... 4192 7B Warwas, Cal (R) ..............................................2nd..............................7-9010† 32A West, Nolan (R)...............................................2nd................... 4226 5B Wiener, Mike (R)...............................................2nd................... 4293 57B Witte, Jeff (R)......................................................2nd................... 4240 14B Wolgamott, Dan (DFL)................................ 5th................................ 6612 67B Xiong, Jay (DFL)............................................. 5th................... 4201 46B Youakim, Cheryl (DFL).................................... 5th................... 9889 3B Zeleznikar, Natalie (R).............................................2nd................... 2676 40B 特别选举定于 1/28/25.............................................................
所有物质的结构和性质都由基本相互作用和对称性决定。对于可见物质的小组成部分——原子来说尤其如此。因此,原子光谱的研究是提高我们对自然理解的重要工具。高电荷离子构成了所有原子系统的大多数,因为每个单独的元素都具有与电子一样多的电荷状态,并且它们在宇宙中无处不在。因此,它们的系统研究不仅是原子物理学的一个组成部分,而且对天体物理学、核物理学和聚变研究等许多其他领域也具有重要意义。最近,高带电离子中的光学跃迁已被提出用于粒子物理标准模型之外的未知物理的敏感测试和新型光学原子钟。然而,由于实验方法不充分,相对光谱精度仅略优于 10 −6,迄今为止阻碍了此类项目的实施。在这项工作中,我们首次展示了高电荷离子的相干激光光谱。与以前使用的光谱方法相比,精度可以提高约 8 个数量级。以高电荷40 Ar 13 +离子中的光学2 P 1 / 2 – 2 P 3 / 2精细结构跃迁为例进行了研究。将该物种的单个离子从热等离子体中分离出来,并将其与激光冷却的单电荷 9 Be + 离子一起作为双离子晶体存储在低温保罗阱的谐波势中。然后,这个耦合的量子力学系统被冷却到运动基态——这是高电荷离子所达到的最冷状态。利用量子逻辑,可以制备40 Ar 13 +离子的电子态,经过光谱分析后,转移到9 Be +逻辑离子并进行检测。此外,还测量了激发态的寿命和 g 因子——后者具有前所未有的精度,这使得解决狭义相对论、电子相互作用和量子电动力学的效应成为可能,并澄清了不同理论预测之间的差异。所展示的概念普遍适用于高电荷离子。因此,这项工作开辟了高带电离子用于各种基础物理测试的潜力,用于探索未知物理(例如第五种力、基本常数的变化和暗物质)以及用于未来的光学原子钟。
3。Mirzajani H.和M. Kraft。软性生物电子用于心脏监测。acs sens。,2024,9,4328-4363。4。Lombarte A.C.,G。G。Malliaras和D. G. Barone。生物杂交再生生物电子学的未来。adv。mater。,2024,2408308。5。Pridmore D.M.C.,F。A. Castro,S。R. P. Silva,P。Camelliti和Y. Zhao。心血管组织工程和植入的新兴生物电子策略。Small,2022,18,2105281。6。Huang Y.,K。Yao,Q. Zhang,X。Huang。 用于电刺激的生物电子学:材料,设备和生物医学应用。 化学。 Soc。 修订版 ,2024,53,8632。 7。 Wang Z.,X。Xiao,W。Wu,X。Zhang,Y。Pang。 超顺式表皮天线,用于多功能运动无伪影的感应和护理点监测。 生物传感器和生物电子学,2024,253,116150。 8。 Wu N.,S。Wan,S。Su,H。Huang,G。Dou,L。Sun. 用于大脑 - 机器界面的电极材料:评论。 Infomat。 ,2021,3,1174–1194。 9。 Wen N. 自我修复材料的最新进展:机械,表演和功能。 反应性和功能性聚合物,2021,168,105041。 10。 Khatib M.,O。Zohar和H. Haick。 自我修复软传感器:从材料设计到实施。 adv。 mater。 11。Huang Y.,K。Yao,Q. Zhang,X。Huang。用于电刺激的生物电子学:材料,设备和生物医学应用。化学。Soc。修订版,2024,53,8632。7。Wang Z.,X。Xiao,W。Wu,X。Zhang,Y。Pang。 超顺式表皮天线,用于多功能运动无伪影的感应和护理点监测。 生物传感器和生物电子学,2024,253,116150。 8。 Wu N.,S。Wan,S。Su,H。Huang,G。Dou,L。Sun. 用于大脑 - 机器界面的电极材料:评论。 Infomat。 ,2021,3,1174–1194。 9。 Wen N. 自我修复材料的最新进展:机械,表演和功能。 反应性和功能性聚合物,2021,168,105041。 10。 Khatib M.,O。Zohar和H. Haick。 自我修复软传感器:从材料设计到实施。 adv。 mater。 11。Wang Z.,X。Xiao,W。Wu,X。Zhang,Y。Pang。超顺式表皮天线,用于多功能运动无伪影的感应和护理点监测。生物传感器和生物电子学,2024,253,116150。8。Wu N.,S。Wan,S。Su,H。Huang,G。Dou,L。Sun.用于大脑 - 机器界面的电极材料:评论。Infomat。,2021,3,1174–1194。9。Wen N. 自我修复材料的最新进展:机械,表演和功能。 反应性和功能性聚合物,2021,168,105041。 10。 Khatib M.,O。Zohar和H. Haick。 自我修复软传感器:从材料设计到实施。 adv。 mater。 11。Wen N.自我修复材料的最新进展:机械,表演和功能。反应性和功能性聚合物,2021,168,105041。10。Khatib M.,O。Zohar和H. Haick。 自我修复软传感器:从材料设计到实施。 adv。 mater。 11。Khatib M.,O。Zohar和H. Haick。自我修复软传感器:从材料设计到实施。adv。mater。11。,2021,33,2004190。ma E.,X.Chen,J。Lai,X。Kong,C。Guo。基于微胶囊的材料的自我修复预报结构:评论。J.流量转移。eng。,2023,10(3),368-384。12。Terryn S.等人,关于Softrobotics的自我修复聚合物的综述。今天的材料,2021,47,187。
[1] 陈善广 , 陈金盾 , 姜国华 , 等 .我国载人航天成就与空间 站建设 .航天医学与医学工程 , 2012, 25: 391-6 [2] 唐琳 .中国空间站完成在轨建造并取得一系列重大进 展 .科学新闻 , 2023, 25: 11 [3] 肖毅 , 陈晓萍 , 许潇丹 , 等 .空间脑科学研究的回顾与展 望 .中国科学 : 生命科学 , 2024, 54: 325-37 [4] 王跃 , 陈善广 , 吴斌 , 等 .长期空间飞行任务中航天员出 现的心理问题 .心理技术与应用 , 2013, 1: 40-5 [5] 陈善广 , 王春慧 , 陈晓萍 , 等 .长期空间飞行中人的作业 能力变化特性研究 .航天医学与医学工程 , 2015, 28: 1-10 [6] 凌树宽 , 李玉恒 , 钟国徽 , 等 .机体对重力的感应及机制 .生命科学 , 2015, 27: 316-21 [7] 范媛媛 , 厉建伟 , 邢文娟 , 等 .航天脑科学研究进展 .生 命科学 , 2022, 34: 719-31 [8] 梁小弟 , 刘志臻 , 陈现云 , 等 .生命中不能承受之轻 —— 微重力条件下生物昼夜节律的变化研究 .生命科学 , 2015, 27: 1433-40 [9] 邓子宣 , Papukashvili D, Rcheulishvili N, 等 .失重 / 模拟 失重对中枢神经系统影响的研究进展 .航天医学与医 学工程 , 2019, 32: 89-94 [10] Tays GD, Hupfeld KE, McGregor HR, et al.The effects of long duration spaceflight on sensorimotor control and cognition.Front Neural Circuits, 2021, 15: 723504-18 [11] Mhatre SD, Iyer J, Puukila S, et al.Neuro-consequences of the spaceflight environment.Neurosci Biobehav Rev, 2022, 132: 908-35 [12] 陈善广 , 邓一兵 , 李莹辉 .航天医学工程学主要研究进 展与未来展望 .航天医学与医学工程 , 2018, 31: 79-89 [13] Moyer EL, Dumars PM, Sun GS, et al.Evaluation of rodent spaceflight in the NASA animal enclosure module for an extended operational period (up to 35 days).NPJ Microgravity, 2016, 2: 16002-9 [14] Mains R, Reynolds S, Associates M, et al.A researcher's guide to: rodent research [M].Rat maintenance in the research animal holding facility during the flight of space lab 3.Washington D.C.: National Aeronautics and Space Administration, 2015 [15] Fast T, Grindeland R, Kraft L, et al.Physiologist, 1985, 28: S187-8 [16] Ronca AE, Moyer EL, Talyansky Y, et al.Behavior of mice aboard the international space station.Sci Rep, 2019, 9: 4717 [17] Morey-Holton ER, Hill EL, Souza KA.Animals and spaceflight: from survival to understanding.J Musculoskelet Neuronal Interact, 2007, 7: 17-25 [18] 陈天 , 胡秦 , 石哲 , 等 .美国太空动物实验研究发展历程 .中国实验动物学报 , 2022, 30: 582-8 [19] 董李晋川 , 黄红 , 刘斌 , 等 .苏俄太空动物实验研究发展 历程 .中国实验动物学报 , 2022, 30: 557-67 [20] Beheshti A, Shirazi-Fard Y, Choi S, et al.Exploring the effects of spaceflight on mouse physiology using the open access NASA GeneLab platform.J Vis Exp, 2019, 143: e58447- 58 [21] 姜宁 , 刘斌 , 张亦文 , 等 .欧日太空动物实验研究概况 .中国实验动物学报 , 2022, 30: 568-73 [22] Mao XW, Byrum S, Nishiyama NC, et al.Impact of
测量机械量 (U) Dir 和 Prof. Dr.-Ing。R. Schwartz 材料强度 (FH) 工程博士。D. Röske 信息与编码理论 (FH) 教授、博士F. Jäger 电气工程基础知识 (S) A. Eggestein 电气工程基础知识 (S) A. Eggestein 电气工程基础知识 (S) A. Eggestein 结构声 (FH) 教授、博士工程师。W. Scholl 波在 Kontinna (U) Dr. 中的传播M. Schmelzer 计量学基础 2 (U) PD 博士U. Siegner 高频和移动无线电测量技术 (U) Dr. T. Kleine-Ostmann 单电子隧道 (U) F. Maibaum 现代存储技术 (U) Dr. M. F. Beug 现代力、质量及其衍生量的测量 (MKM) (U) Prof. Dr.-Ing。K.-D。夏季测量数据评估和测量不确定度 (MDA) (U) 教授、博士、工程师。K.-D。夏季测量数据评估和测量不确定度 (MDA) (U) 教授、博士、工程师。K.-D。夏季测量数据评估和测量不确定度 (MDA) (U) 教授、博士、工程师。K.-D。分析化学 (MDC) 夏季测量数据评估和测量不确定度 (U) 教授、博士工程师。K.-D。夏季防火装置 - 研讨会“Tank Reversion AI - AIII + B”(S) Dr. D.-H- Frobese 防火装置 - 研讨会“Tank Reversion AI - AIII + B”(S) Dr. D.-H- Frobese VDI 知识论坛“处理易燃液体和气体时的防爆”(S) Dr. H. Bothe 工艺和工厂安全 (U) 总监和 U. Klausmeyer 教授“本质安全”保护类型 (FH) Dr.-Ing 的基础知识。U. Johannsmeyer Exi 现场总线模型 (FH) Dr.-Ing.U. Johannsmeyer 具有本质安全电路的系统 - 基础知识和构造要求 (A) Dr.-Ing.U. Johannsmeyer 电气驱动(机械工程系)(U) Dr.-Ing。C. Lehrmann Electrical Drives(机械工程系)() 工程博士。C. Lehrmann 防爆“电气系统”() Dr.-Ing。C. Lehrmann 防爆设备 () Dr.-Ing。M. Beyer 固态激光器 - 光谱基础知识和特性 (U) PD Dr. S. Kück 量子光学 (U) 教授、博士邮政信箱施密特相干光学 (U) 教授、博士邮政信箱施密特量子光学 (U) 教授、博士邮政信箱施密特量子逻辑和捕获离子精密光谱学 (S) 教授、博士邮政信箱Schmidt 材料技术的环境问题 I 和 II (U) 教授、博士、工程师。F. Löffler 技术交流 (FH) 教授、博士、工程师。Lederer 流体测量技术 (U) Dr.F. Löffler DoReMi 课程“跨学科辐射研究”:微剂量学 (S) Dr. H. Rabus Walther Bothe:巧合法 (U ) Dr. H. Rabus KIT 专家活动“微剂量和纳剂量测定的蒙特卡罗模拟”(U) Dr. H. Rabus DoReMi 课程“跨学科辐射研究”:纳米剂量学 (S) Dr. H. Nettelbeck 同步加速器辐射和 X 射线激光的定量实验 (U) 教授、博士M. Richter 同步加速器辐射和 X 射线激光的定量实验 (U) 教授、博士M. Richter 物理学分析方法精选 (U) Dr. B. Beckhoff 物理分析方法精选 (U) Dr. B. Beckhoff 温度过程技术基础 (S) Dr. J. Fischer 热电偶测温 (S) Dr. F. Edler 噪声测温 (S) Dr. F. Edler 电气工程课程 (FH) Dr. E. Lenz 不可逆热力学 (U) 教授、博士P. Strehlow 统计热力学 (U) 教授、博士P. Strehlow 流体测量技术 (U) Dr.Lederer 活性介质中的非线性波 (U) Dr. M. Bär 活性介质中的非线性波 (U) Dr. M. Bär 讲座“开源软件的科学工作”(U)Prof. Dr. H·科赫
Auch wir sind auf dem Weg, 365 Tage im Jahr beschäftigen wir uns mit unseren Wegen, die uns an die unterschiedlichsten Ziele führen sollen, beschäftigen wir uns mit Fragen, ängsten, Ungewissheit, Sorgen… and mit der Ankunft Gottes, so wie in diesen Wochen! nehmen wir mit auf diesen Weg 是吗?我想知道 Rucksäcke wohl gefüllt 吗? Mit der ein oder anderen schweren 最后, mit schönen Momenten und unbeanworteten Fragen?还有 – womit würden wir unseren Rucksack für die Reise ausstatten?是 meinen sie,是 wären für sie die wichtigsten Dinge,die sie auf gar keinen Fall zu Hause lassen würden。那么,背包中的背包是否会在 Reiseführern empfohlen 中发挥作用?在过去的一个世纪里,我的发动机在摩托车上运行,并且在后面。 Meine Eltern 和 ich wollten uns in Wuppertal bei meinen Geschwistern treffen, wir hatten verschiedene Wege, jedoch ein und dasselbe Ziel!请重新包装我的 ADAC 卡、Checkkarte、Navi noch eine Straßenkarte 和 Proviant。 Das waren für ihn die wichtigsten Dinge, die er im Notfall bräuchte – er war also gut gerüstet. Nach dieser Reise,sah sein Gepäck anders aus,所以 sagte er es bei dem Motorradgottesdienst。瓦鲁姆?我自己,hatte das Ziel nicht erreicht。 Auf dem weg hatte ich einen schweren Unfall und fand mich auf der Intensivstation wieder。 Keiner wusste zu dem Zeitpunkt,ob ich mein Ziel noch mal erreichen würde。迈纳姆·瓦特(Meinem Vater)在令人惊叹的时刻,将背包全部吸入完美的战争。 Das alles Entscheidende fehlte, seine Bibel, die ihm und meiner Familie in dieser Zeit unbeschreiblichen Halt und Zuversicht gab. Io et tu Ich und du – wir gehören zusammen – dass DU ist das alles Entscheidende auf unseren Wegen。在工艺和祖斯普鲁赫(Zuspruch)中,杜尔奇达斯杜(DU)是他的儿子,在他的手上或在他的手上,他是一个大师。 Das Du, rüstet uns aus mit all dem, was wir jemals auf all unseren Wegen benötigen werden. Das Du vollendet unser Sein,das DU,welches wir im Laufe unseres 生活和日常,bekommen wir auf dem Weg hin zu Weihnachten immer wieder neu geschenkt! Das Besondere an diesem Weg hin zum Du ist doch, dass wir ihn nicht alleine gehen werden。 Auch wenn wir, wie Hape Kerkeling auf seinem Weg, manches Mal vielleicht mit uns hadern, unsere Schritte misstrauisch betachten and so manche Fragen stellen, dürfen wir doch sicher sein: Gott geht mit, er verlässt uns nicht, gerade in den schweren Zeiten unseres Lebens停止在besonderer Weise 一个盛宴,trägt uns 印度教,所以dass wir im Rückblick statt zwei Spuren nur eine Spur auf unserem Lebensweg sehen。 Die Spur Gottes,die uns damit wissen lässt,hier habe ich dich getragen! Jeder von uns hat seinen eigenen Weg, hat seine eigene Geschichte mit Gott。 Die Wege mögen unterschiedlicher nicht sein, doch sie münden alle in den einen