摘要:利用广义自由能和Kramers逃逸率,在量子Bañados-Teitelboim-Zanelli(qBTZ)黑洞中观测到一种新奇的热力学现象,该现象也揭示了量子黑洞的独特性质。在通过扩展麦克斯韦构造得到的广义自由能的影响下,黑洞系统内部各热力学态的随机热运动诱发相变。通过对Kramers逃逸率的分析发现,qBTZ黑洞热力学系统表现出反弹效应,这源于黑洞热力学系统中熵的非单调性。此外,在不同量子反作用下得到了qBTZ黑洞的整体热力学图像。
摘要。核自旋能级在理解镧系元素单分子磁体中的磁化动力学以及量子比特的实现和控制方面起着重要作用。我们使用包括自旋轨道相互作用在内的多配置从头算方法(超越密度泛函理论)研究了阴离子 DyPc 2(Pc=酞菁)单分子磁体中 161 Dy 和 163 Dy 核的超精细和核四极相互作用。之所以选择 Dy 的两种同位素,是因为其他同位素的核自旋为零。这两种同位素的核自旋 I = 5 / 2,尽管核磁矩的大小和符号彼此不同。电子基态和第一激发的 Kramers 双线之间的巨大能隙使我们能够将微观超精细和四极相互作用汉密尔顿量映射到电子伪自旋 S eeff = 1 / 2 的有效汉密尔顿量上,这对应于基态 Kramers 双线。我们的从头算表明,核自旋和电子轨道角动量之间的耦合对超精细相互作用贡献最大,并且 161 Dy 和 163 Dy 核的超精细和核四极子相互作用都比 TbPc 2 单分子磁体中的 159 Tb 核的要小得多。计算出的电子-核能级分离与 163 DyPc 2 的实验数据相当。我们证明 Dy Kramers 离子的超精细相互作用会导致零场下的隧道分裂(或磁化的量子隧穿)。这种效应不会发生在 TbPc 2 单分子磁体中。发现 161 DyPc 2 和 163 DyPc 2 避免的能级交叉的磁场值明显不同,这可以从实验中观察到。
Altermagnet是晶体学旋转对称性破坏自旋顺序的状态,尽管表现出Kramers非脱位带,但具有净零磁化。在这里,我们表明,单层,伯纳尔·比拉耶(Bernal Bilayer)和菱形三层石墨烯(Trilayer)在单层中与动量无关的局部自旋列秩序产生了p波 - 波,d波和f波 - altermagnets,从而在上面构成线性,二甲和立方体的跨度,并在其中描述了一个和观点的拓扑。 3次谐波在相互空间中。相同的结合也包含在带有Majorana Altermagnets的自旋三型列型超导体内。总的来说,这些发现突出了电子带结构在识别量子材料中这种外来磁性方面的重要性。我们描述了面内磁场对Altermagnets的影响,并在这些系统中提出了新型的自旋偏置拟南芥。
强相互作用模型通常具有比能级一对一映射更微妙的“对偶性”。这些映射可以是不可逆的,正如 Kramers 和 Wannier 的典型例子所表明的那样。我们分析了 XXZ 自旋链和其他三个模型共有的代数结构:每平方梯子上有一个粒子的里德堡阻塞玻色子、三态反铁磁体和两个以之字形耦合的伊辛链。该结构在四个模型之间产生不可逆映射,同时还保证所有模型都是可积的。我们利用来自融合类别的拓扑缺陷和 orbifold 构造的格子版本明确地构建这些映射,并使用它们给出描述其临界区域的明确共形场论配分函数。里德伯阶梯和伊辛阶梯还具有有趣的不可逆对称性,前者中一个对称性的自发破坏会导致不寻常的基态简并。
路径积分图景之所以重要,有两个原因。首先,它提供了量子力学的另一种补充图景,其中经典极限的作用显而易见。其次,它为研究微扰理论不充分或完全失效的领域提供了一条直接途径。在量子力学中,解决此类问题的标准方法是 Wentzel、Kramers 和 Brillouin 的 WKB 近似。然而,将 WKB 近似推广到量子场论是极其困难的(甚至是不可能的)。相反,费曼路径积分的非微扰处理(在量子力学中等同于 WKB)可以推广到量子场论中的非微扰问题。在本章中,我们将仅对玻色子系统(如标量场)使用路径积分。在后续章节中,我们还将对路径积分进行全面的讨论,包括它在费米子场、阿贝尔和非阿贝尔规范场、经典统计力学和非相对论多体系统中的应用。
摘要我们考虑了浸入完美流体暗物质(PFDM)的黑洞背景中的标量扰动。我们通过使用第六阶温策尔 - 克莱默 - 布里林(WKB)近似,最长的模式是那些比临界值小于临界值的角度质量较高的质量质量的模式,被称为临界模式的异常衰减速率,而超出了相反的临界值。此外,我们表明,对于pfdm强度参数k的不同值k,可以恢复准频率(QNF)的实际部分(QNF),QNF的虚部以及Schwarzschild背景的临界标量场的质量。对于小于这些值的k值,上述量大于Schwarzschild的背景。然而,除了这些k的这些值之外,这些数量还小于Schwarzschild后台。
Kitaev 蜂窝模型在量子自旋液体的探索中起着关键作用,其中分数准粒子将在无退相干拓扑量子计算中提供应用。关键因素是键依赖的 Ising 型相互作用,称为 Kitaev 相互作用,它需要自旋和轨道自由度之间的强纠缠。在这里,我们研究了显示稳健 Kitaev 相互作用的稀土材料的识别和设计。我们通过开发专为大规模计算而设计的并行计算程序,仔细研究了所有可能的 4 f 电子配置,这需要微扰过程中多达 600 多万个中间态。我们的分析表明,在所有 Kramers 二重态的实现中,各向同性的 Heisenberg J 和各向异性的 Kitaev K 相互作用之间都存在主要的相互作用。值得注意的是,具有 4 f 3 和 4 f 11 配置的实例展示了 K 相对于 J 的普遍性,这为探索化合物(包括 Nd 3 + 和 Er 3 +)中的 Kitaev 量子自旋液体带来了意想不到的前景。
摘要:本研究提出了基于硅纳米球(SINP)的广角超材料长通(LP)边缘的系统优化。多层配置构成了sinp- meta-firms和抗旋转涂层(ARC)元素以前在文献中未考虑的元素,以增强其在停止和通过频段中的效果性能。这项研究已成功地开发了一种使用Kramers-Kronig关系的有效折射指数的准确模型,从而实现了用于快速设备性能优化的经典薄膜设计软件,该软件由全波数值软件验证。这种系统的优化产生了高度效率,近换档的长期超材料过滤器,这是由于其高光密度(OD = 2.55)和跨宽角范围(0°–60°)的高光谱移动而证明的。这些进步预示着高效率的超材料光学组件的发展,适用于各种应用,这些应用需要在发病率的各种角度上保持一致的性能。
altermagnetism是最近发现的一种新型的共线磁铁,它与铁磁体共享某些特征(在Brillouin Zone的一般点上缺乏非同性化的Kramers退化性,有限的综合大厅的效果,有限的磁磁效应),另一种与Antiferromagagnets(net Magnetiza-tione symention sonefore效应)[1]。虽然已经探索了altermagnets的许多特性,这在很大程度上是从旋转的角度,超导二极管和altermagnetism之间的相互作用的角度,这是另一个方面,其中铁磁体和抗fiferromagnets主要不同的是,到目前为止尚未解决。毫不奇怪,Altermagnets可以在一种情况下表现出典型的铁磁体的属性,而在另一种情况下,抗fiferromagnets典型的属性。There are two issues that are typically considered in terms of interaction between magnetism and supercon- ductivity: (1) what kind of superconducting state may be consistent with a given magnetic order and (2) what kind of pairing can be generated by proximity to a mag- netic order (in other words, if we can gradually suppress the long range magnetic order by an external stimulus, such as pressure, what supperconducting symmetry may emerge on the量子的两侧?)。
背景。在恒星对流区中,运动粘度与热扩散率之比,即普朗特数,远小于 1。目的。这项工作的主要目标是研究对流流动和能量传输的统计数据与普朗特数的关系。方法。采用笛卡尔几何中可压缩非旋转流体动力对流的三维数值模拟。对流区 (CZ) 位于两个稳定分层的层之间。在大多数情况下,熵波动扩散的主要贡献来自亚网格尺度扩散率,而平均辐射能量通量则由采用 Kramers 不透明度定律的扩散通量介导。在这里,我们分别研究上流和下流的统计和传输特性。结果。体积平均均方根速度随普朗特数的减小而增加。同时,下行流的填充因子会降低,导致在较低的普朗特数下,下行流平均会更强。这导致对流过冲对普朗特数有很强的依赖性。速度功率谱不会随着普朗特数的变化而发生明显变化,但对流层底部附近除外,因为那里垂直流占主导地位更为明显。在最高雷诺数下,速度功率谱与 Bolgiano-Obukhov k − 11 / 5 的兼容性比与 Kolmogorov-Obukhov k − 5 / 3 的兼容性更好