德克萨斯大学 MD 安德森癌症中心(德克萨斯州休斯顿)肿瘤治疗和创新转化研究(TRACTION)
1医学肿瘤学,Fondazione Policlinico Universitorio Agostino Gemelli,IRCCS,00168,意大利罗马; enrico.gurreri01@icatt.it(例如); antonio.agostini@unicatt.it(a.a.); geny.piro@policlinicogemelli.it(g.p.); giampaolo.tortora@policlinicogemelli.it(G.T。)2美国德克萨斯大学安德森癌症中心,美国德克萨斯州休斯敦市,美国德克萨斯州77025,泌尿生殖器肿瘤学系; ggenovese@mdanderson.org(g.g.); lperelli@mdanderson.org(L.P。)3美国德克萨斯州休斯顿市安德森癌症中心基因组医学系美国德克萨斯州休斯敦市的安德森癌症中心,美国6美国6医学肿瘤学,Cattolica del Sacro Cuore,00168,意大利罗马 *通信:Carmine.carbone@policliclinicogegemelli.it
摘要:耐药性仍然是癌症治疗的主要问题。抗癌药物耐药性的主要原因之一是经常发生突变的 RAS 基因。特别是,人们已经做出了相当大的努力,通过直接和间接控制 KRAS 的活性来治疗 KRAS 诱发的癌症。然而,RAS 蛋白仍然是癌症治疗中最突出的药物靶点之一。最近,已经开发出新的靶向蛋白质降解 (TPD) 策略,例如靶向蛋白水解的嵌合体,以使“不可用药”的靶点可用药并克服耐药性和突变问题。在本研究中,我们讨论了小分子抑制剂、基于 TPD 的靶向 RAS 通路蛋白的小分子化学品,以及它们在治疗 KRAS 突变癌症中的潜在应用。新的 TPD 策略有望成为治疗 KRAS 突变肿瘤患者的有希望的治疗方法。
第四次工业革命理解了智能制造,其中采用了传感器,计算平台和数据建模(Kusiak,2018)。di Nardo等。(2020)在行业4.0的框架中开发了一个模型,其中管理的作用在这个新的高度网络环境中是关键。建议网络物理系统以及大量的数据获取和采矿可能支持决策和计划执行阶段。在此框架中,技术进步是必要的,但不是足够的条件。实际上,在动态环境中通过不同的界面定义为人类用户和机器之间的通信/相互作用的功能性和有针对性的人类相互作用也是必不可少的。管理层必须监督对技术创新的不断增长的需求,这是必不可少的,这是必不可少的,因为复杂的复杂性,更严格的市场流程以及全球化产生的较高竞争(De Carolis等,2016),并确保在工作环境中良好的创新能力。从这个意义上讲,部分过程的自动化仅在所有组织之间实施实质性变化时才增加价值,而当机器的效率通过人类的认知技能和足够的功能增强时,这种情况就会发生。在这种光明中,神经管理是一个新的管理部门,最近开发了决策过程(Balconi和Fronda,2019,2020a)以及社会行为与互动(Balconi和Vanutelli,2017; Venturella et al。,2017; Balconi and Fronda,2020b,2020b,2020b ,, 2020b)均通过使用Neurosc进行了研究。这种多学科方法的结合和结果可能会促进智能制造,尤其是对于共同机器人技术而言,由于安全性和生产力原因,代理之间的运营效果具有显着的重量。在这项工作中,“共同机器人”一词打算强调其协作维度,这是与其他技术系统相关的主要特征(Ajoudani等,2018)。
肺癌是最常见的癌症死亡原因之一,非小细胞肺癌(NSCLC)约占所有肺癌病例的85%。KRAS是RAS家族三种亚型之一,是与人类癌症相关的最常见致癌基因,并编码肿瘤中的关键信号蛋白。30%的NSCLC病例认为KRAS致癌突变是起始因素,占与驱动突变相关的NSCLC病例的最大比例。由于传统的小分子抑制剂难以有效抑制KRAS的相关功能,因此KRAS蛋白被称为“无药可用靶点”。然而,近年来,KRAS基因中一种常见突变——甘氨酸12突变为半胱氨酸(G12C)的发现,带来了共价抑制剂的设计和合成,为有效靶向KRAS提供了新的策略。本综述对KRAS的结构、功能、信号转导通路等进行了综述,并讨论了NSCLC中KRAS突变亚型(特别是G12C、G12V、G12D)可用的治疗策略和潜在的治疗前景,为NSCLC治疗中选择KRAS突变亚型提供参考。
未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本的版权持有人(该版本发布于2024年7月31日。; https://doi.org/10.1101/2024.07.30.30.605880 doi:biorxiv Preprint
摘要背景缺乏高质量的下一代测序(NGS)参考材料(RM)阻碍了中国液体活检的临床使用。目的本研究旨在在非小细胞肺癌(NSCLC)相关的KIT肺癌(NSCLC)肉瘤病毒癌(KRAS)/神经母细胞瘤ras Oncogene(NRAS)/epidermal brfe(egigermal raf)(egigermal raf)(egigermal raf)(e-graf)brf)(e-eg ki tipp)(e-eg ki tipp raf)(e-graf)(egigermal raf)(e-eg kin frffipp raf) 目的旨在开发全国RM外部质量评估和绩效评估。 )/间质 - 上皮过渡因子(MET)遗传测定,使用血浆循环肿瘤DNA(CTDNA)。 方法由NGS检测到并通过Sanger测序进行验证以建立RM。 细胞系基因组DNA被剪切,并以10%浓度刺激基底等离子体CfDNA。 然后,通过四个测序平台确定校准精度。 平均值被以基础等离子体为RM面板的0.1%,0.1%,0.3%,1%和3%的浓度。 然后,邀请五名制造商评估RM面板的性能。 结果选择了20个具有23个临床重要突变的细胞系,包括KRAS中的六个突变,NRAS中的两个突变,三个突变,在BRAF中进行了3个突变,在磷脂酰肌醇-4,5-双磷酸3-激酶3-激酶催化亚基α(PIK3CA)中,六个突变,其中6个突变,其中有6个突变,pik3CA(PIK3CA),六个中的EGFR中的6个EGFR,EGFR,一个EGFR增益(4-5-5概率)和一份(2-5)。 RM面板由87个样本组成,包括以四个浓度(0.1%,0.3%,1%和3%),一个MET增益,一个EGFR增益和一种野生型的21个突变。目的旨在开发全国RM外部质量评估和绩效评估。 )/间质 - 上皮过渡因子(MET)遗传测定,使用血浆循环肿瘤DNA(CTDNA)。 方法由NGS检测到并通过Sanger测序进行验证以建立RM。 细胞系基因组DNA被剪切,并以10%浓度刺激基底等离子体CfDNA。 然后,通过四个测序平台确定校准精度。 平均值被以基础等离子体为RM面板的0.1%,0.1%,0.3%,1%和3%的浓度。 然后,邀请五名制造商评估RM面板的性能。 结果选择了20个具有23个临床重要突变的细胞系,包括KRAS中的六个突变,NRAS中的两个突变,三个突变,在BRAF中进行了3个突变,在磷脂酰肌醇-4,5-双磷酸3-激酶3-激酶催化亚基α(PIK3CA)中,六个突变,其中6个突变,其中有6个突变,pik3CA(PIK3CA),六个中的EGFR中的6个EGFR,EGFR,一个EGFR增益(4-5-5概率)和一份(2-5)。 RM面板由87个样本组成,包括以四个浓度(0.1%,0.3%,1%和3%),一个MET增益,一个EGFR增益和一种野生型的21个突变。目的旨在开发全国RM外部质量评估和绩效评估。 )/间质 - 上皮过渡因子(MET)遗传测定,使用血浆循环肿瘤DNA(CTDNA)。 方法由NGS检测到并通过Sanger测序进行验证以建立RM。 细胞系基因组DNA被剪切,并以10%浓度刺激基底等离子体CfDNA。 然后,通过四个测序平台确定校准精度。 平均值被以基础等离子体为RM面板的0.1%,0.1%,0.3%,1%和3%的浓度。 然后,邀请五名制造商评估RM面板的性能。 结果选择了20个具有23个临床重要突变的细胞系,包括KRAS中的六个突变,NRAS中的两个突变,三个突变,在BRAF中进行了3个突变,在磷脂酰肌醇-4,5-双磷酸3-激酶3-激酶催化亚基α(PIK3CA)中,六个突变,其中6个突变,其中有6个突变,pik3CA(PIK3CA),六个中的EGFR中的6个EGFR,EGFR,一个EGFR增益(4-5-5概率)和一份(2-5)。 RM面板由87个样本组成,包括以四个浓度(0.1%,0.3%,1%和3%),一个MET增益,一个EGFR增益和一种野生型的21个突变。目的旨在开发全国RM外部质量评估和绩效评估。 )/间质 - 上皮过渡因子(MET)遗传测定,使用血浆循环肿瘤DNA(CTDNA)。方法由NGS检测到并通过Sanger测序进行验证以建立RM。细胞系基因组DNA被剪切,并以10%浓度刺激基底等离子体CfDNA。然后,通过四个测序平台确定校准精度。平均值被以基础等离子体为RM面板的0.1%,0.1%,0.3%,1%和3%的浓度。然后,邀请五名制造商评估RM面板的性能。结果选择了20个具有23个临床重要突变的细胞系,包括KRAS中的六个突变,NRAS中的两个突变,三个突变,在BRAF中进行了3个突变,在磷脂酰肌醇-4,5-双磷酸3-激酶3-激酶催化亚基α(PIK3CA)中,六个突变,其中6个突变,其中有6个突变,pik3CA(PIK3CA),六个中的EGFR中的6个EGFR,EGFR,一个EGFR增益(4-5-5概率)和一份(2-5)。RM面板由87个样本组成,包括以四个浓度(0.1%,0.3%,1%和3%),一个MET增益,一个EGFR增益和一种野生型的21个突变。所有五家公司的3%,1%和0.3%样本的检测率为100%。对于0.1%的浓度,15个样本的结果不一致,但至少有3家公司对每个突变都有正确的结果。为等离子ctDNA的KRAS / NRAS / EGFR / BRAF / MET突变面板的结论RM开发了,这对于对独立实验室的性能的质量控制至关重要。
KRAS 突变是与癌症相关的最常见基因突变之一,约占所有肿瘤的 25%,尤其是胰腺癌、肺癌和结直肠癌。突变型 KRAS 长期以来被认为是一种无法用药的靶点,多年来阻碍了直接针对 KRAS 的进展,而利用 KRAS 突变细胞转变的代谢行为将药物靶向递送到细胞中可能提供另一种机会。巨胞饮作用是一种非选择性液相内吞途径,研究发现巨胞饮作用是 KRAS 驱动肿瘤的一种代谢特征,在从细胞外液中获取营养物质方面发挥着关键作用。通过巨胞饮作用,KRAS 突变癌细胞可以吸收各种药物递送系统,利用巨胞饮作用将治疗剂递送到 KRAS 突变肿瘤细胞内正在成为一种新的药物递送方法。在本文中,我们总结了研究 KRAS 突变诱导的巨胞饮作用的癌症生物学研究,回顾了利用巨胞饮作用增强进行 KRAS 突变癌细胞选择性药物输送的最新研究,并讨论了该策略的潜在机会、挑战和陷阱。
一名 61 岁女性患者,因持续疲劳被诊断为右上肺叶转移性腺癌,伴有局部淋巴结转移、多发性肺转移和右额叶脑转移(根据 PET-CT 发现的临床分期:cT3 cN2 cM1c)。肿瘤 DNA 的下一代测序(Ion AmliSeq Colon and Lung Research Panel v2、Ion Torrent 平台、热点区域分析)显示 KRAS p.G12C (c.34G>T) 突变,但没有其他靶向改变。PD-L1 的免疫组织化学染色在肿瘤细胞中不到 1%。一线全身治疗采用顺铂、培美曲塞和帕博利珠单抗,总体获得部分缓解,包括脑转移完全缓解,2018 年 9 月开始使用培美曲塞和帕博利珠单抗维持治疗。2019 年 3 月,由于进行性多发性神经病变,停用培美曲塞。2019 年 6 月,患者肺部出现进展,因咯血而需要止血放射治疗,帕博利珠单抗也停用。单独的脑转移继续缓解。2019 年 11 月,患者肺部再次出现进展,并出现有症状的脑部进展,小脑蚓部出现新的病变,导致导水管受压和连续性脑积水。植入脑室腹腔分流术,小脑蚓部病变用立体定向放射治疗;进行性肺部病变用放射治疗;此外,由于病情稳定,且持续控制疾病超过一年,因此恢复使用派姆单抗治疗。然而,2021 年 2 月,患者小脑已知病变进展(临床意义不大),左脑室周围白质出现新转移,肺部进一步进展。2021 年 3 月开始使用多西他赛,肺部和脑部病变进展,右额叶和颞叶出现新病变,这是四个周期后的最佳反应(见图 1 治疗时间顺序示意图)。2021 年 6 月,开始口服 960 毫克每日 sotorasib 治疗。经过 6 周的 sotorasib 治疗后,不仅肺部,而且未治疗的脑转移瘤都出现了令人印象深刻的治疗反应,这种反应持续了 5 个月(见图 2)。由于全身进展,停止使用 sotorasib 治疗,并于 2021 年 11 月底开始使用吉西他滨治疗。2021 年 12 月初,患者出现症状性脑部进展,行为改变和精神萎靡,并进行了神经外科干预,包括开颅术和肿瘤切除术。吉西他滨的全身治疗持续到 2022 年 2 月,并因疾病进展而停止。患者于 2022 年 3 月接受培美曲塞进一步全身治疗(再次治疗),随后于 2022 年 4 月接受卡铂和紫杉醇治疗。此外,患者于 2022 年 4 月进行了全脑放射治疗。随着病情进一步进展,患者自 2022 年 5 月起接受最佳支持治疗。
数据截止时间:2024 年 1 月 5 日。 * 一名接受 divarasib 400 mg QD 治疗的患者出现胆道感染和胆管狭窄(被认为与 divarasib 无关)以及食欲下降和贫血(被认为与 divarasib 有关)。第二名接受 divarasib 200 mg QD 治疗的患者出现腹泻(被认为与 divarasib 有关)。† 患者出现 3 级食欲下降,这是相关的严重不良事件(400 mg QD 组)。‡ 一名接受 divarasib 200 mg QD 治疗的患者出现 1 起导致剂量减少(2 级恶心)的不良事件和 1 起导致剂量中断的不良事件(3 级腹泻)。第二位接受 divarasib 400 mg QD 治疗的患者出现 1 起导致剂量减少的 AE(3 级食欲下降)和 3 起导致剂量中断的 AE(贫血、胆道感染和胆管狭窄,均为 3 级)。§ 患者出现的其他 TRAE 包括贫血、淀粉酶升高、恶心、外周水肿、发热和呕吐(各 n=1)。AE,不良事件;TRAE,治疗相关不良事件。1. Sacher A 等人。N Eng J Med 2023;2. Garralda E 等人。于 2024 年 9 月 13 日至 17 日在 ESMO 上发表(616MO)。