摘要:热电池(TBS)是使用无机盐电解质的主要储备电池。这些电解质是在环境温度下的非导电固体。烟火材料用于提供足够的热能以熔化电解质并激活电池。TBS用于各种国防部申请,包括导弹和弹药。热电池的基本单元由阳极和阴极组成,该阳极由粘合剂材料隔开,注入了盐电解质。粘合剂材料提供结构支撑,并在激活电池时将阳极和阴极分开。粘合剂材料的关键性能特征是提供可靠的结构支持的能力,同时最大化电解质结合特性以最大程度地减少所需的粘合剂体积。没有足够的性能材料,无法保持阳极和阴极之间的缝隙,从而导致电压噪声,局部加热或Intracell Short。商业生产的两种表现最高的粘合剂材料是Maglite S和Marinco ol,由于经济原因,它们的制造商都被其制造商停止了。曾经没有提供过使用的前体或制造过程的文档,以允许重新创建产品。随后,结核病制造商一直在使用越来越多的库存和/或开发的定格间隙非最佳(较低性能)但足够的解决方案来满足军事需求。在本文中这些粘合剂遭受了过程的不稳定性和间歇性失败的困扰,政府花了数百万美元来容纳缺乏可靠性。Qynergy为二进制LICL:KCLELECELETE开发了氧化镁(MGO)粘合剂材料(“ Gomax”),以优于该行业中使用的现有粘合剂材料。Qynergy通过科学地设计了该材料,现在可以从几个前体供应商中生产出来,从而减轻供应链风险。Qynergy的Gomax MGO都将确保当前的热电池制造供应链,并在结核病应用程序空间中提高性能。已经研究了驱动粘合剂性能的机理和粉末特性。这种理解允许对特定的热电池应用来优化和控制粘合剂材料的特性,并实现了国防部长(OSD)制造科学技术计划(MSTP)下实现的规模生产。
5-C]二元溶剂混合物中的吡啶。主题会议关于光谱法的最新趋势会议,印度泰米尔纳德邦印度理工学院,印度泰米尔纳德邦,2014年6月20日至21日。(选择为最佳口头表现)。5)S.K。Behera , A. Karak and G. Krishnamoorthy, Photophysics of 2-(4'-Amino-2'-hydroxyphenyl)- 1H - imidazo-[4,5-c]pyridine and Its Analogues: Intramolecular Charge Transfer Suprresed by Intramolecular Proton Transfer , 8 th Asian Photochemistry Conference (APC-2014), IISER- Niist(CISR)Trivandrum,喀拉拉邦,在印度Photosciences研究学会的主持下,2014年11月9日至13日,印度喀拉拉邦Kovalam。6)S。K. Behera和G. Krishnamoorthy,分子内电荷转移,由分子内质子转移,研究结论,由学生学术委员会(SAB)博士理事会(SAB)组织,IIT Guwahati,IIT Guwahati,23Rd-26th,2015年3月23日。7) S. K. Behera and G. Krishnamoorthy, Role of Protic Solvents in the Twisted Intramolecular Charge Transfer of 2-(4'- N , N -dimethylaminophenyl)imidazo[4,5-c]pyridine: A Relay Proton Transfer , ChemConvene, Department Chemistry, IIT Guwahati, 8 th April -2015.8)S。K. Behera和G. Krishnamoorthy,2-(4'- N,N,N--二甲基氨基)苯基胺[4,5-C]吡啶在墨西哥cuc虫-7-ril cavity,19 Crsi National Cavity in Cucurbit-7-ril cavity,CRSI NSC-NSC-116年7月7日,北部的BBENF,2016年7月7日。 013,印度西孟加拉邦。(被选为最佳口头表现)9)S。K. Behera,新的2-(2'-羟基苯基)苯咪唑衍生物的新2-(2'-羟基苯基)衍生物:一项合并的实验和理论研究,印度国家国民发展科学与技术研讨会,印度科学会议局,印度科学会议局,布巴内斯瓦尔分会,Kiit Chaplion,Kiit University,Kiit University,Kiit University,Kiit University,Kiit University,12-13,2016年12月12日,2016年12月。
ENGIE 通过其企业风险投资部门 ENGIE New Ventures 宣布对 H2SITE 进行战略投资。H2SITE 总部位于西班牙毕尔巴鄂,是由 Tecnalia 研究技术中心和埃因霍温理工大学创建的子公司。该公司旨在将基于膜反应器的系统商业化,该系统能够在客户场所从各种氢载体(例如甲烷,特别是生物甲烷和氨等)生产高纯度氢气。H2SITE 技术平台旨在通过紧凑且经济高效的现场解决方案解决氢气的分散生产、运输和储存问题,并基于将膜结合在反应器中的一步式工业工艺。ENGIE 通过各种合作研究项目确定并评估了这项颠覆性技术。除了对 H2SITE 的少数股权投资外,ENGIE 还通过其研究中心 ENGIE Lab CRIGEN 与 Tecnalia 和埃因霍温理工大学建立了研发合作伙伴关系,以进一步开发该技术的新兴应用,为实现碳中和做出贡献。事实上,氢能是能源转型的重要组成部分,可以满足移动性、能源存储和工业应用等多种需求。ENGIE 执行副总裁 Shankar KRISHNAMOORTHY 表示:“我们对 H2SITE 的投资是 ENGIE 引领的能源转型的核心,特别是通过培育和参与氢能市场的发展。我们对这项新的研究合作感到非常高兴,它将能够充分发挥多功能和有前景的技术的潜力,并扩大可持续和高效的解决方案以满足工业和移动性需求。”
Eric Wang, 1, 10, * Jose Mario Bello Pineda, 2, 3, 4, 10 Won Jun Kim, 5, 10 Sisi Chen, 5 Jessie Bourcier, 5 Maximilian Stahl, 6 Simon J. Hogg, 5 Jan Phillipp Bewersdorf, 5 Cuijuan Han, 1 Michael E. Singer, 5 Daniel Cui, 5 Caroline E. Erickson, 5 Steven M. Tittley, 5 Alexander V. Penson, 5 Katherine Knorr, 5 Robert F. Stanley, 5 Jahan Rahman, 5 Gnana Krishnamoorthy, 7, 8 James A. Fagin, 7, 8 Emily Creger, 9 Elizabeth McMillan, 9 Chi-Ching Mak, 9 Matthew Jarvis, 9 Carine Bossard, 9 Darrin M. Beaupre, 9 Robert K. Bradley, 2 , 3 , * 和 Omar Abdel-Wahab 5 , 11 , * 1 杰克逊基因组医学实验室,美国康涅狄格州法明顿 06032 2 美国华盛顿州西雅图弗雷德哈钦森癌症研究中心公共卫生科学和基础科学部 3 美国华盛顿州西雅图华盛顿大学基因组科学系 4 美国华盛顿州西雅图华盛顿大学医学科学家培训计划 5 美国纽约州纽约市纪念斯隆凯特琳癌症中心斯隆凯特琳研究所分子药理学项目 6 美国马萨诸塞州波士顿丹娜—法伯癌症研究所肿瘤内科系 7 美国纽约州纽约市纪念斯隆凯特琳癌症中心人类肿瘤学和发病机制项目 8 美国纽约州纽约市纪念斯隆凯特琳癌症中心医学系、内分泌学分部 9 Biosplice Therapeutics Inc.,美国加利福尼亚州圣地亚哥 10 这些作者贡献相同 11 主要联系人 *通信地址:eric.wang@jax.org (EW)、rbradley@fredhutch.org (RKB)、abdelwao@mskcc.org (OA-W.) https://doi.org/10.1016/j.ccell.2022.12.002
性能。在过去的十年中,已经对含有用于耐腐蚀性的复合涂料的基于功能化石墨烯的纳米片(GNP)进行了几项实验研究。其中一些提供了腐蚀抗性的改善,而其他一些则没有成功。例如,Krishnamoorthy等人[1]通过将石墨烯氧化物片掺入醇酸树脂中,制备了油漆复合材料。在类似于海水的侵略性氯化物环境中,通过数量级改善了镀锌铁的耐腐蚀性。Chang等[2]报道了聚苯胺(PANI)/石墨烯复合涂料,以提高钢在海水中的耐腐蚀性,最高数量级。电阻随复合材料中石墨烯基材料的含量而增加。但是,有必要适当地将本研究中使用的石墨烯纳米材料功能化。将GNP掺入聚合物矩阵后,由于聚合物涂层而导致的腐蚀性进一步改善的机制在于GNP在通过涂层渗透的同时为腐蚀性物种创造曲折路径的能力。实际上。在含聚苯胺/含有粘土的复合材料表(PACC)的情况下,一种类似的机制也是如此。然而,已经证明了带有GNP的复合涂料可以优于聚苯胺/粘土片(PACC)的复合材料,因为前者为腐蚀性物种提供了更曲折的路径,如通透性数据所证明的那样。另一项研究[3]还支持了由于基于石墨烯的材料的板/去角质而引起的曲折路径机制。已经对含有GNP的复合材料进行了进一步的研究(例如,石墨烯纳米片[4],氧化石墨烯(GO)[5],还原氧化石墨烯(RGO)[6])。但是,这些系统并未作为令人印象深刻的耐腐蚀性产生。为了理解这种变异性的原因并减轻它们的原因,建议在合成中利用机器学习(ML)可用的现代工具,以及其对复合涂料的降解。
Engie在新加坡沿海的Semakau Island上开设了一个孢子(意味着可持续的区域)平台。与Nanyang Technology University的能源研究所和Schneider Electric合作,该网站的目的是成为一个生活实验室,由Engie及其合作伙伴使用,以测试包括绿色氢在内的不同可再生技术,提供培训,并证明100%可再生的微电网是可能的。这个平台增强了Engie的目的,即加速向碳中性经济的过渡,这是该集团研发计划的关键里程碑。在本地“可再生能源整合演示者”(REID)倡议下实现,该项目由最先进的多流体微电网溶液组成,该解决方案产生了650 kW的电力。Engie的Reids-Spore是一个与新加坡大陆和能源自给自足的平台,其可再生能源和存储解决方案都集成在一起。它拥有新加坡最大的风力涡轮机,以及用于电力和活动性的全链链。此孢子平台将能够解决偏远地区访问绿色能源的问题。它将成为Engie Group使用的生活实验室,以在真实的热带条件下测试和开发各种低碳解决方案,并在更大范围内准备其部署。向前迈进,它可以作为行业和专业人员学习这些新技术的学习中心。每年由Engie在研发方面投资了1.9亿欧元,重点是可再生能源的研究。Semakau项目将是一系列研发测试床中的第一个,该测试床将由Engie在东南亚设立。Shankar Krishnamoorthy说:“这个Reids-Spore平台是Engie领导的能源过渡的核心。这是一个明显的证明,表明我们如何通过更智能,更绿,更易于获取的网格解决方案加速我们的能量过渡,并证明了可再生和自我足够的能源系统的相关性,能够满足世界各地的电力需求。”
一项关于评估本地治里三级医院医疗保健专业人员糖尿病风险的研究:一项横断面研究 Amarnath Santhaseelan, 1,* Premnath Dhasaram, 1 Karthika Ganesh 1 和 Kannan Krishnamoorthy 2 1 助理教授,社区医学系,Sri Lakshmi Narayana 医学科学研究所,本地治里 605502 2 教授,社区医学系,Sri Lakshmi Narayana 医学科学研究所,本地治里 605502 接受日期:2024 年 10 月 21 日/在线发表日期:2024 年 12 月 9 日 摘要简介:糖尿病是一种以血糖升高为特征的慢性代谢性疾病,其中最常见的是 2 型糖尿病。糖尿病作为一种非传染性疾病,对公共卫生构成重大挑战,其全球患病率不断上升,达到的流行水平可能很快会超过发展中国家和发达国家的传染病。目的:评估三级医院医生和护士患糖尿病的风险。方法:2022 年 2 月至 4 月,在本地治里一家三级医院的医生和护士中进行了一项以医院为基础的横断面研究。使用简单随机抽样方法选择调查参与者。结果:研究中的大多数参与者年龄在 36 至 49 岁之间,占样本的 60.5%。其中,63.0% 为男性,65.5% 居住在城市地区。BMI 正常的人占比最大(51.5%),其次是超重者(36.5%)和被归类为肥胖的人(7.5%)。此外,59.5% 的参与者表现出腹部肥胖,63.5% 的人表示没有身体活动,77.5% 的人没有糖尿病家族史。结论:本研究评估了简化印度糖尿病风险评分 (IDRS) 在识别劳动人口中的高风险个体方面的有效性。迫切需要鼓励医生和护士养成健康的生活方式。医生应积极努力在日常生活中运用他们所掌握的知识。关键词:血糖、2 型糖尿病、糖尿病、印度糖尿病风险评分*通讯作者:Amarnath Santhaseelan 电子邮件:amarnathsanthaseelan82@gmail.com
1 S. Datta、S. Dutta、B. Grisafe、J. Smith、S. Srinivasa 和 H. Ye,IEEE Micro 39,8 (2019)。2 T. Bryllert、L.-E. Wernersson、T. Löwgren 和 L. Samuelson,Nanotechnology 17,S227 (2006)。3 D. Akinwande、N. Petrone 和 J. Hone,Nat Commun 5,5678 (2014)。4 R. Chen、H. Kim、PC McIntyre、DW Porter 和 SF Bent,Applied Physics Letters 86 (2005)。5 R. Chen、H. Kim、PC McIntyre 和 SF Bent,Applied Physics Letters 84,4017 (2004)。 6 S. Seo、BC Yeo、SS Han、CM Yoon、JY Yang、J. Yoon、C. Yoo、HJ Kim、YB Lee、SJ Lee、JM Myoung、HB Lee、WH Kim、IK Oh 和 H. Kim,ACS Appl Mater Interfaces 9,41607 (2017)。7 KJ Park、JM Doub、T. Gougousi 和 GN Parsons,Applied Physics Letters 86 (2005)。8 FS Minaye Hashemi、C. Prasittichai 和 SF Bent,ACS Nano 9,8710 (2015)。9 WH Kim、HBR Lee、K. Heo、YK Lee、TM Chung、CG Kim、S. Hong、J. Heo 和 H. Kim,Journal of the Electrochemical Society 158,D1 (2011)。 10 H. Kim,ECS Transactions 16, 219 (2008)。11 R. Wojtecki、J. Ma、I. Cordova、N. Arellano、K. Lionti、T. Magbitang、TG Pattison、X. Zhao、E. Delenia 和 N. Lanzillo,ACS applied materials & interface 13, 9081 (2021)。12 E. Färm、M. Kemell、M. Ritala 和 M. Leskelä,The Journal of Physical Chemistry C 112, 15791 (2008)。13 E. Färm、M. Kemell、E. Santala、M. Ritala 和 M. Leskelä,Journal of The Electrochemical Society 157 (2010)。 14 A. Sinha、DW Hess 和 CL Henderson,《真空科学与技术杂志 B:微电子学和纳米结构》24(2006 年)。15 V. Suresh、MS Huang、MP Srinivasan、C. Guan、HJ Fan 和 S. Krishnamoorthy,《物理化学杂志 C 116,23729》(2012 年)。16 A. Sinha、DW Hess 和 CL Henderson,《真空科学与技术杂志 B:微电子学和纳米结构》25(2007 年)。17 TG Pattison、AE Hess、N. Arellano、N. Lanzillo、S. Nguyen、H. Bui、C. Rettner、H. Truong、A. Friz 和 T. Topuria,《ACS nano 14,4276》(2020 年)。 18 M. Fang 和 JC Ho,ACS Nano 9,8651(2015)。19 AJ Mackus、AA Bol 和 WM Kessels,Nanoscale 6,10941(2014)。20 MJ Biercuk、DJ Monsma、CM Marcus、JS Becker 和 RG Gordon,Applied Physics Letters 83,2405(2003)。21 AT Mohabir、G. Tutuncuoglu、T. Weiss、EM Vogel 和 MA Filler,ACS nano(2019)。22 E. Bassous 和 A. Lamberti,Microelectronic Engineering 9,167(1989)。23 C. Ton-That、A. Shard、D. Teare 和 R. Bradley,Polymer 42,1121(2001)。 24 P. Louette、F. Bodino 和 J.-J. Pireaux,表面科学光谱 12,69 (2005)。25 A. Richard,法拉第讨论 98,219 (1994)。
[2]男性C,Andersson NG,Rafowicz A,Liesner R,Kurnik K,Fischer K等。抑制剂在未选择的先前未经治疗的患者B:PEDNET研究中。Hae-Matologica。 2021; 106:123 - 9。 [3] Fischer K,Iorio A,Hollingsworth R,Makris M,Euhass合作者。 FVIII抑制剂根据浓度的开发:Euhass注册中心的数据不包括与其他研究重叠。 血友病。 2016; 22:E36 - 8。 [4] Fischer K,Lassila R,Peyvandi F,Calizzani G,Gatt A,Lambert T等。 根据浓缩物的抑制剂发展:欧洲血友病安全监测(EUHASS)项目的四年结果。 血栓止血。 2015; 113:968 - 75。 [5] Gouw SC,Van der Bom JG,Ljung R,Escuriola C,Cid AR,Claeyssens- Donadel S等。 因子VIII产品和严重血友病的抑制剂发育。 2013; 368:231 - 9。 [6] Peyvandi F,Mannucci PM,Garagiola I,El-Beshlawy A,Elalfy M,Ramanan V等。 对因子VIII和中和抗体的随机试验A. N Engl J Med。 2016; 374:2054 - 64。 [7] Hassan S,Cannav o A,Gouw SC,Rosendaal FR,Van der Bom JG。 因子VIII产品和抑制剂的发育率是严重或中度严重的血友病A:一种系统综述。 J血栓止血。 2018; 16:1055 - 68。 [8] Makris M,Calizzani G,Fischer K,Gilman EA,Hay CR,Lassila R等。 螺栓res。 2011; 127:S22 - 5。Hae-Matologica。2021; 106:123 - 9。[3] Fischer K,Iorio A,Hollingsworth R,Makris M,Euhass合作者。FVIII抑制剂根据浓度的开发:Euhass注册中心的数据不包括与其他研究重叠。血友病。2016; 22:E36 - 8。 [4] Fischer K,Lassila R,Peyvandi F,Calizzani G,Gatt A,Lambert T等。 根据浓缩物的抑制剂发展:欧洲血友病安全监测(EUHASS)项目的四年结果。 血栓止血。 2015; 113:968 - 75。 [5] Gouw SC,Van der Bom JG,Ljung R,Escuriola C,Cid AR,Claeyssens- Donadel S等。 因子VIII产品和严重血友病的抑制剂发育。 2013; 368:231 - 9。 [6] Peyvandi F,Mannucci PM,Garagiola I,El-Beshlawy A,Elalfy M,Ramanan V等。 对因子VIII和中和抗体的随机试验A. N Engl J Med。 2016; 374:2054 - 64。 [7] Hassan S,Cannav o A,Gouw SC,Rosendaal FR,Van der Bom JG。 因子VIII产品和抑制剂的发育率是严重或中度严重的血友病A:一种系统综述。 J血栓止血。 2018; 16:1055 - 68。 [8] Makris M,Calizzani G,Fischer K,Gilman EA,Hay CR,Lassila R等。 螺栓res。 2011; 127:S22 - 5。2016; 22:E36 - 8。[4] Fischer K,Lassila R,Peyvandi F,Calizzani G,Gatt A,Lambert T等。根据浓缩物的抑制剂发展:欧洲血友病安全监测(EUHASS)项目的四年结果。血栓止血。2015; 113:968 - 75。 [5] Gouw SC,Van der Bom JG,Ljung R,Escuriola C,Cid AR,Claeyssens- Donadel S等。 因子VIII产品和严重血友病的抑制剂发育。 2013; 368:231 - 9。 [6] Peyvandi F,Mannucci PM,Garagiola I,El-Beshlawy A,Elalfy M,Ramanan V等。 对因子VIII和中和抗体的随机试验A. N Engl J Med。 2016; 374:2054 - 64。 [7] Hassan S,Cannav o A,Gouw SC,Rosendaal FR,Van der Bom JG。 因子VIII产品和抑制剂的发育率是严重或中度严重的血友病A:一种系统综述。 J血栓止血。 2018; 16:1055 - 68。 [8] Makris M,Calizzani G,Fischer K,Gilman EA,Hay CR,Lassila R等。 螺栓res。 2011; 127:S22 - 5。2015; 113:968 - 75。[5] Gouw SC,Van der Bom JG,Ljung R,Escuriola C,Cid AR,Claeyssens- Donadel S等。因子VIII产品和严重血友病的抑制剂发育。2013; 368:231 - 9。 [6] Peyvandi F,Mannucci PM,Garagiola I,El-Beshlawy A,Elalfy M,Ramanan V等。 对因子VIII和中和抗体的随机试验A. N Engl J Med。 2016; 374:2054 - 64。 [7] Hassan S,Cannav o A,Gouw SC,Rosendaal FR,Van der Bom JG。 因子VIII产品和抑制剂的发育率是严重或中度严重的血友病A:一种系统综述。 J血栓止血。 2018; 16:1055 - 68。 [8] Makris M,Calizzani G,Fischer K,Gilman EA,Hay CR,Lassila R等。 螺栓res。 2011; 127:S22 - 5。2013; 368:231 - 9。[6] Peyvandi F,Mannucci PM,Garagiola I,El-Beshlawy A,Elalfy M,Ramanan V等。对因子VIII和中和抗体的随机试验A. N Engl J Med。2016; 374:2054 - 64。 [7] Hassan S,Cannav o A,Gouw SC,Rosendaal FR,Van der Bom JG。 因子VIII产品和抑制剂的发育率是严重或中度严重的血友病A:一种系统综述。 J血栓止血。 2018; 16:1055 - 68。 [8] Makris M,Calizzani G,Fischer K,Gilman EA,Hay CR,Lassila R等。 螺栓res。 2011; 127:S22 - 5。2016; 374:2054 - 64。[7] Hassan S,Cannav o A,Gouw SC,Rosendaal FR,Van der Bom JG。因子VIII产品和抑制剂的发育率是严重或中度严重的血友病A:一种系统综述。J血栓止血。2018; 16:1055 - 68。 [8] Makris M,Calizzani G,Fischer K,Gilman EA,Hay CR,Lassila R等。 螺栓res。 2011; 127:S22 - 5。2018; 16:1055 - 68。[8] Makris M,Calizzani G,Fischer K,Gilman EA,Hay CR,Lassila R等。螺栓res。2011; 127:S22 - 5。Euhass:欧洲血友病安全监视系统。[9] Fischer K,Lewandowski D,Marijke Van Den Berg H,Janssen MP。使用注册表数据评估幼崽中抑制剂发展的有效性:Euhass项目。血友病。2012; 18:e241 - 6。[10] Medcalc。Medcalc软件有限公司比较两个率。https://www.medcalc.org/calc/rate_comparison.php [版本22.019; 2024年2月1日访问]。[11] Hay CRM,Palmer B,Chalmers E,Liesner R,Maclean R,Rangarajan S等。在英国严重的血友病中,VIII因子抑制剂的发生率。血。2011; 117:6367 - 70。[12] Krishnamoorthy S,Liu T,Drager D,Patarroyo-White S,Chabra ES,Peters R等。重组因子VIII FC(RFVIIIFC)融合蛋白降低了免疫原性并诱导血友病A小鼠的耐受性。细胞免疫。 2016; 301:30 - 9。 [13] Blumberg RS,Lillicrap D. IgG FC部分的耐受性特性及其与血液中的治疗和管理相关性。 血。 2018; 131:L2205 - 14。 [14] Sherman A,Bertolini TB,Arisa S,Herzog RW,KaczmarekR。皮肤质量抑制剂形成中的IX因子IX给药,并使血友病B小鼠对系统性因子IX给药。 res练习血栓止血。 2023; 7:102248。 [15] Nolan B,Klukowska A,Shapiro A,Rauch A,Recht M,Ragni M等。 血液副词。 2021; 5:2732 - 9。 [16]KönigsC,Ozelo MC,Dunn A,Kulkarni R,Nolan B,Brown SA等。细胞免疫。2016; 301:30 - 9。 [13] Blumberg RS,Lillicrap D. IgG FC部分的耐受性特性及其与血液中的治疗和管理相关性。 血。 2018; 131:L2205 - 14。 [14] Sherman A,Bertolini TB,Arisa S,Herzog RW,KaczmarekR。皮肤质量抑制剂形成中的IX因子IX给药,并使血友病B小鼠对系统性因子IX给药。 res练习血栓止血。 2023; 7:102248。 [15] Nolan B,Klukowska A,Shapiro A,Rauch A,Recht M,Ragni M等。 血液副词。 2021; 5:2732 - 9。 [16]KönigsC,Ozelo MC,Dunn A,Kulkarni R,Nolan B,Brown SA等。2016; 301:30 - 9。[13] Blumberg RS,Lillicrap D. IgG FC部分的耐受性特性及其与血液中的治疗和管理相关性。血。2018; 131:L2205 - 14。 [14] Sherman A,Bertolini TB,Arisa S,Herzog RW,KaczmarekR。皮肤质量抑制剂形成中的IX因子IX给药,并使血友病B小鼠对系统性因子IX给药。 res练习血栓止血。 2023; 7:102248。 [15] Nolan B,Klukowska A,Shapiro A,Rauch A,Recht M,Ragni M等。 血液副词。 2021; 5:2732 - 9。 [16]KönigsC,Ozelo MC,Dunn A,Kulkarni R,Nolan B,Brown SA等。2018; 131:L2205 - 14。[14] Sherman A,Bertolini TB,Arisa S,Herzog RW,KaczmarekR。皮肤质量抑制剂形成中的IX因子IX给药,并使血友病B小鼠对系统性因子IX给药。res练习血栓止血。2023; 7:102248。[15] Nolan B,Klukowska A,Shapiro A,Rauch A,Recht M,Ragni M等。血液副词。2021; 5:2732 - 9。[16]KönigsC,Ozelo MC,Dunn A,Kulkarni R,Nolan B,Brown SA等。幼崽B长研究的最终结果:评估先前未经治疗的血友病患者RFIXFC的安全性和效果。在先前未经治疗的血友病A:幼犬A-long-Long-最终结果中,首次研究了延长的半衰期RFVIIIFC。血。2022; 139:3699 - 707。[17] Fischer K,Lassila R,Peyvandi F,Gatt A,Hollingsworth R,Lambert T等。根据严重的血友病中的浓度开发抑制剂:对1392年以前未经欧洲和加拿大未经治疗的人进行报告。res练习血栓止血。2023; 7:E102265。