摘要:RIGA(参考输入生成算法)是一种单调数值方法,用于为薛定谔方程描述的封闭系统生成量子门。在之前的论文中,作者提出了一种单调量子门生成算法,本文称为 L-RIGA(Lindblad-RIGA),该算法能够考虑由 Lindblad 主方程描述的开放量子系统。作者在该论文中声称(但没有证据)L-RIGA 最初是从 RIGA 的一个版本中获得的。在本文中,我们介绍了这个版本的 RIGA,本文称为 F-RIGA(Fock-RIGA),它可以在将开放量子系统转换为 Fock-Liouville 描述后对其进行考虑。此转换基于 Fock-Map,即将 × n 埃尔米特矩阵发送到实欧几里得空间的 2 向量的映射 F。本文的贡献在于表明 L-RIGA 和 F-RIGA 是等价的,即对于每个步骤 ℓ ,通过 Fock-Map 的逆变换将 F-RIGA 获得的数据转换为 L-RIGA 同一步骤中获得的数据,同时让相应的 Lyapunov 函数保持不变。此外,由于 L-RIGA 与 Krotov 方法的一个版本非常相似,这项工作的一个副产品也是在 Krotov 方法的该版本与 RIGA 所调用的算法系列之间建立了紧密的联系。
逆问题持续引起人们的极大兴趣,特别是在量子控制动力学和量子计算应用领域。在此背景下,量子最优控制理论试图构建一个外部控制场 E(t),使量子系统从已知的初始状态演化到目标最终状态。预测 E(t) 的时间形式对于控制量子计算 [1]、量子信息处理[2–4]、激光冷却[5, 6] 和超冷物理 [7, 8] 中的潜在动力学至关重要。在复杂的多体量子系统中,预测最优 E(t) 场为控制光捕获复合物和多体相干系统中所需的动力学效应提供了关键的初始条件 [9–13]。解决这些量子控制问题的传统方法是使用基于梯度的方法或其他数值密集型方法最大化所需的跃迁概率 [14–17]。这些方法包括量子轨迹上的随机梯度下降 [18]、Krotov 方法 [19]、梯度上升脉冲工程 (GRAPE) [20] 方法和斩波随机基算法 (CRAB) [21] 方法。虽然每种算法都有自己的目的和优势,但大多数方法都需要复杂的数值方法来求解最优控制场。此外,由于这些逆问题的非线性特性,这些算法中的迭代次数和浮点运算次数可能非常大,有时甚至会导致相对简单的一维问题的结果不收敛 [16, 22])。为了解决前面提到的计算瓶颈,我们小组最近探索了使用监督机器学习来解决这些复杂的逆问题