分化的甲状腺癌(DTC)(1)包括乳头状甲状腺癌(PTC),卵泡甲状腺癌(FTC)及其变异亚型(2),是最常见的内分泌恶性肿瘤,并且最近几年的发病率迅速增加。DTC通常具有良好的预后,碘131治疗和甲状腺抑制剂已被证明对10年生存率的患者有益,范围为80%至95%(3,4)。然而,大约5%-20%的病例可能由于基因突变引起的肿瘤生物学变异,导致不同的亚型和预后不良,这可能与高度浸润性肿瘤的生物学特征有关(5)。因此,甲状腺结节的鉴别诊断仍然很明显。对比增强超声(CEU)可以实时评估组织的微循环灌注(6),提供准确可靠的数据,并且可以避免由个体差异引起的诊断错误(7)。由于甲状腺正常组织中的微容器的丰度,它显示出造影剂后的快速和均匀增强。然而,甲状腺结节具有不同的血管生成模式,并且CEUS上的表现可能不同(8)。先前的研究报道了甲状腺结节的CEUS特征,但是,大多数是基于结节内部(9-11),而CEUS上甲状腺结节的增强模式仍然没有足够的能力来诊断甲状腺癌(12)。到目前为止,只有一项研究重点介绍了结节周围区的CEU特征(13)。这项研究的目的是通过研究甲状腺结节的内部和外围区域的定性和定量参数来评估CEU在DTC的鉴别诊断中的价值。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
DNA分析在遗传疾病诊断、法医鉴定、生物技术和分子生物学等研究中有多种用途。在这项生物分子研究中,使用储存的不同年份的血液样本进行 DNA 分析。本研究旨在确定血液样本保存时间与DNA数量和质量之间的相关性,并确定保存血液样本中的DNA是否可以作为模板进行进一步分析,即通过测量DNA的浓度和纯度来查看数量,通过扩增AMEL基因来查看DNA的质量。从储存的血液样本中提取 DNA 的方法对于生产高质量的 DNA 非常重要。两种常见的方法是使用 chelex 和商业试剂盒。 Chelex 方法使用树脂结合金属离子并去除蛋白质,而商业试剂盒则使用硅胶柱来纯化 DNA。试剂盒中存储了 9 个血液样本,商业试剂盒中存储了 9 个血液样本。该方法包括提取,然后用分光光度计测量 DNA 的浓度和纯度,基因组电泳,用 PCR 进行 DNA 扩增,以及 PCR 电泳。对DNA提取结果进行定量和定性分析。使用 IBM SPSS for Windows 版本 25 应用程序执行定量数据分析。定量测试采用分光光度法进行。使用重复测量方差分析检验 (Anova Test) 来处理浓度值,而使用 Krukal Wallis 检验 (Krukal Wallis Test) 来测试纯度值。根据琼脂糖凝胶电泳结果进行定性检测。使用 Chelex 方法发现 2022 个样本中的 DNA 含量最高,平均浓度值为 341.69 ng/µL。 2023个商业试剂盒样本的DNA质量最好,平均纯度值为1.797。所有样本均成功扩增并显示出雄性和雌性。关键词:牙釉蛋白,储存血液,DNA,提取。
零件/结构。开发并实现了机器学习(ML)驱动的设计,计划,计划,感应,控制,数据库反馈,机器的决定,以减轻预测的不确定性/风险,并验证了此类复合材料的此类智能学习系统,用于综合材料制造自动化(在Onr资助的液体综合中心)(智能材料)•Deliquel Assing Moulter(University Assing Assing)(2000年) RTM, VARTM, SCRIMP, and the variations • Out-Of-Autoclave Vacuum Bag Only (OOA-VBO) process • Void and Defect Characterization and Modeling for Polymer Matrix Composites • Residual Stress and Dimensional Stability of Polymer Matrix Composites • Nano-Composites and Multiscale Micro-/Nano- Fibers Reinforced Composites Manufacturing and Characterization •多孔介质中的微/纳米流体和悬浮液•功能分级材料•聚合物复合材料的粘合接头•流变,粘性流,ER/MR流体•多孔介质中的传输现象•数值方法•可持续能量技术(能源存储和收获)
2025使用结构化矩阵自定义了软磁性注意的电感偏差。Yilun Kuang,Noah Amsel,Sanae Lotfi,Shikai Qiu,Andres Potapczynski,Andrew Gordon Wilson。审查2024年,贝叶斯对抗体的优化是由不断发展的序列生成模型所告知的。Alan Nawzad Amin,Nate Gruver ∗,Yilun Kuang ∗(同等贡献),Yucen Lily Li ∗,Hunter Elliott,Aniruddh Raghu,Calvin McCarter,Peyton Greenside Greenside,Andrew Gordon Wilson。国际学习表征会议(ICLR),2025年,Spotlight 2024解锁令牌作为较大语言模型的泛化界限的数据点。sanae Lotfi ∗,Yilun Kuang ∗(同等贡献),Brandon Amos,Micah Goldblum,Marc Finzi,Andrew Gordon Wilson。神经信息处理系统(Neurips),2024年,Spotlight 2023大型语言模型的非呈现概括范围。sanae Lotfi ∗,Marc Finzi ∗,Yilun Kuang ∗(同等贡献),Tim G. J. Rudner,Micah Goldblum,Andrew Gordon Wilson。国际机器学习会议(ICML),2024 2023具有最大多种能力表示的自然图像的学习有效编码。Thomas Yerxa,Yilun Kuang,Eero Simoncelli,Sueyeon Chung。神经信息处理系统(神经),2023年研讨会论文
量子物理学已取得的发展证明了其服务技术领域的能力。其中最重要的一个领域就是军事用途领域。北约内部已经制定了盟友之间的合作战略,以确保这项技术成为未来作战环境的一部分。然而,量子技术的使用存在着根本的限制,例如敏感性和基础设施。该系统运行于亚原子水平且对外界因素敏感,成为限制其在作战环境中应用的因素。其次,系统的敏感性以及用现有技术实现的难度导致系统安装中的基础设施问题。为了使武装部队适应这种变化,他们需要采取与过去为应对技术发展而做出的理论和组织修订不同的举措。量子修正是一种修正概念,它研究量子技术的军事应用领域,以确保军队的适应性,并研究这些领域变革所要遵循的路径。
抽象的流行表示方法鼓励在输入上应用的转换下的特征不变性。然而,在3D感知任务中,诸如对象定位和segmen的任务中,输出自然与某些转换(例如旋转)相等。使用训练前损失函数,鼓励在某些转换下的特征等同于特征,提供了强大的自学信号,同时还保留了传输特征表示之间的几何关系信息。这可以在下游任务中改善与此类转换一样的下游任务。在本文中,我们提出了一个时空的阶段性学习框架,通过共同考虑空间和时间增强。我们的实验表明,最佳性能是通过预训练的方法产生的,该方法鼓励了对翻译,缩放和平流,旋转和场景流量。对于空间增强,我们发现,根据转换,是对比度目标或按分类目标的对比度,可以产生最佳的要求。为了利用现实世界的对象变形和运动,我们考虑了顺序的LIDAR场景对,并开发出一个基于3D场景流量的新颖的均衡性目标,从而导致整体上的性能。我们表明,在许多设置中,3D对象检测的预训练方法优于现有的模棱两可的方法。
accomplished under ONR funded Advanced Materials Intelligent Processing Center (University of Delaware), 2000-2003) • Liquid Composite Molding Processes such as RTM, VARTM, SCRIMP, and the variations • Out-Of-Autoclave Vacuum Bag Only (OOA-VBO) process • Void and Defect Characterization and Modeling for Polymer Matrix Composites • Residual Stress and Dimensional Stability of Polymer Matrix合成材料•纳米复合材料和多尺度的微型/纳米纤维增强了制造和特征的复合材料•多孔培养基中的微/纳米流体和悬浮液和悬浮液•功能分级的材料•功能性关节•聚合物复合材料的粘合剂关节收获)
•是M.SC或M.N.S.的主席(1)Nejib Smaoui先生(M.N.S. )委员会 )于1990年5月毕业; (2)Samir Hammadi先生(M.N.S. )于1994年5月毕业; (3)Mattew Lyles先生(硕士(硕士)分析了一个比例依赖性的捕食者 - 捕食系统,该系统具有两个斑块,分别于1997年5月; (4)特拉维斯·斯蒂尔(Travis Steele)先生(硕士与论文)分析与比例依赖性的捕食者 - 捕食者系统具有竞争性猎物,并于1997年8月毕业。 (5)Jay Wopperer先生,论文标题:结核病特有,2002年12月。 (6)安德鲁牛仔裤,2006年8月(美国公民)的大师。 (7)罗恩·奥格伯恩(Ron Ogborne),2006年8月(美国公民)的大师。 (8)2008年7月(美国公民)。 (9)Mathew Wienke,2008年8月(美国公民)。 (10)贷款Nyugen,2008年11月。 共同顾问。 (美国公民)。 (11)Aaron Abromowitz(2010)。 (美国公民)。(1)Nejib Smaoui先生(M.N.S.)于1990年5月毕业; (2)Samir Hammadi先生(M.N.S.)于1994年5月毕业; (3)Mattew Lyles先生(硕士(硕士)分析了一个比例依赖性的捕食者 - 捕食系统,该系统具有两个斑块,分别于1997年5月; (4)特拉维斯·斯蒂尔(Travis Steele)先生(硕士与论文)分析与比例依赖性的捕食者 - 捕食者系统具有竞争性猎物,并于1997年8月毕业。 (5)Jay Wopperer先生,论文标题:结核病特有,2002年12月。(6)安德鲁牛仔裤,2006年8月(美国公民)的大师。(7)罗恩·奥格伯恩(Ron Ogborne),2006年8月(美国公民)的大师。(8)2008年7月(美国公民)。(9)Mathew Wienke,2008年8月(美国公民)。(10)贷款Nyugen,2008年11月。共同顾问。(美国公民)。(11)Aaron Abromowitz(2010)。 (美国公民)。(11)Aaron Abromowitz(2010)。(美国公民)。
社会。最重要的是,迄今为止,针对这一系列致残或限制生命的疾病,获得许可的治疗方法极其有限(Chinnery,2015;Viscomi 等人,2023)。线粒体疾病的治疗方法包括对症治疗以改善生活质量或延长寿命,以及基因治疗以减少异质体并治愈细胞生化缺陷。对症治疗包括操纵线粒体的细胞含量、通过雷帕霉素诱导线粒体周转、恢复 NAD + 水平、调节活性氧的产生和氧化应激等(Russell 等人,2020)。基因治疗包括直接编辑线粒体基因组、基因替代疗法(Silva-Pinheiro 等,2020;Ling 等,2021)和线粒体移植疗法(Green field 等,2017)。基因编辑技术作为一种潜在的治疗选择,在过去十年中已在核遗传疾病的治疗中得到广泛研究(Sharma 等,2015;Nelson 等,2016;De Ravin 等,2017;Zheng 等,2022),越来越多的临床试验正在进行中(Arabi 等,2022)。然而,由于缺乏有效的工具来操纵 mtDNA( Silva-Pinheiro 和 Minczuk,2022 年),其在由 mtDNA 突变引起的线粒体疾病中的意义受到阻碍,除非通过锌指融合( Minczuk et al., 2008; Gammage et al., 2014; Gammage et al., 2016a; Gammage et al., 2016b; Gammage et al., 2018b )或 TALE 融合的 fokI 核酸酶( Bacman et al., 2013; Reddy et al., 2015; Bacman et al., 2018; Pereira et al., 2018; Yang et al., 2019)或 TALE 融合的 fokI 核酸酶( Bacman et al., 2013; Reddy et al., 2015; Bacman et al., 2018; Pereira et al., 2018; Yang et al., 2019)切割和消除有害的 mtDNA 拷贝。线粒体DNA碱基编辑技术目前已发展成为生物技术中最常用的编辑技术之一(Pereira et al., 2018),以及基于TALE系统的单体酶(Pereira et al., 2018)。近年来,基于TALE的线粒体DNA碱基编辑工具陆续被引入,第一种是DddA衍生的胞嘧啶碱基编辑器(DdCBE)(Mok et al., 2020),它为按预期操纵线粒体DNA打开了大门。DddA系统来源于伯克霍尔德菌,DdCBE由两半无毒的TALE融合分裂DddA(DddA-N和DddA-C)组成,通过将这两半分裂的DddA重新组装成功能性脱氨酶,催化间隔区域内的胞嘧啶脱氨。目前,DdCBE 已成功应用于植物 (Kang et al., 2021)、哺乳动物细胞 (Mok et al., 2020)、斑马鱼 (Guo et al., 2021)、小鼠 (Lee et al., 2021; Lee et al., 2022a; Guo et al., 2022)、大鼠 (Qi et al., 2021) 甚至人类生殖细胞 (Wei et al., 2022a; Chen et al., 2022) 的线粒体 DNA 编辑。在我们的实验室中,它还已成功用于小鼠早期卵泡阶段的有效生殖系线粒体 DNA 编辑(已提交数据)。不幸的是,它在挽救线粒体疾病方面的应用极其罕见,无论是用于治疗研究(Silva-Pinheiro 等人,2022 年)还是用于临床试验(Chen 和 Yu-Wai-Man,2022 )。众所周知,潜在基因编辑结果的可预测性对于基因编辑技术在临床上用于基因治疗至关重要。为此,已经进行了大量的工作来了解CRISPR系统在核基因组编辑中对不同靶标的编辑规则,并且已经证明对于每个被CRISPR/Cas9编辑的原型间隔物来说,其结果是完全可预测的(van Overbeek et al., 2016 ; Shen et al., 2018 ; Shou et al., 2018 ; Allen et al., 2019 ; Chakrabarti et al., 2019 ; Chen et al., 2019 ; Long, 2019 ; Shi et al., 2019 ),这使我们能够提前知道每种策略在临床上应用的潜在结果。然而,对于线粒体基因组,由于缺乏 DNA 修复,CRISPR/Cas9 尚未参与 mtDNA 编辑