Kingfa Science&Technology(印度)的第40届年度股东大会成绩单于2024年9月25日举行,Nirnoy Sur,公司秘书:好的,非常早上好,女士们和先生们。在主席的许可并代表印度金法及其董事会的允许下,我通过视频会议 /其他视觉视觉手段向参加公司股东的第40届年度股东大会的所有成员表示热烈欢迎。根据公司事务和SEBI部发行的通告,并根据《 2013年公司法》的适用规定以及根据规定的规定召集并进行了此次会议。此外,该公司与国家证券存放者有限公司NSDL捆绑在一起,为通过远程电子投票和电子投票提供了投票设施,并通过VC和OAVM设施参加了股东股东大会。在主席的允许下,我致电会议命令,因为有必要的法定人数。由于AGM通过VC和OAVM召集并举行,因此成员任命代理的设施不适用。我在此通知您,公司的以下董事已通过VC加入会议。Nirnoy Sur,公司秘书:Bo Jingen先生,会议董事长兼会议主席Bo Jingen,主席:早上好。 Nirnoy Sur,公司秘书:非执行和非独立董事Wu Xiaohui先生,董事:早上好。 Wang Dazhong,首席执行官:早上好。 1。 首席财务官Chen Xiaoqiong先生Nirnoy Sur,公司秘书:Bo Jingen先生,会议董事长兼会议主席Bo Jingen,主席:早上好。Nirnoy Sur,公司秘书:非执行和非独立董事Wu Xiaohui先生,董事:早上好。Wang Dazhong,首席执行官:早上好。1。首席财务官Chen Xiaoqiong先生Nirnoy Sur,公司秘书:Doraiswami Balaji先生,执行董事Doraiswami Balaji,执行董事:Namaste Nirnoy Sur:公司秘书:Dilip Dinkar Kulkarni先生:独立委员会委员会委员会委员会委员会委员会委员会NIRIIM S.NIRIIM S.NIRIIM SIRNONIIM S.独立董事Nilima Ramrao Shinde的Shinde:Namaste Nirnoy Sur,公司秘书:Ramachandran Sudhinder先生,独立董事Ramachandran Sudhinder:Namaste Nirnoy Sur,公司秘书:公司秘书:公司首席执行官Wang Dazhong先生,公司首席执行官。Nirnoy Sur,公司秘书:我进一步告诉您,KMP之后,法定审计师,秘书审计师和Christinizer出现在肉类中。
[2]男性C,Andersson NG,Rafowicz A,Liesner R,Kurnik K,Fischer K等。抑制剂在未选择的先前未经治疗的患者B:PEDNET研究中。Hae-Matologica。 2021; 106:123 - 9。 [3] Fischer K,Iorio A,Hollingsworth R,Makris M,Euhass合作者。 FVIII抑制剂根据浓度的开发:Euhass注册中心的数据不包括与其他研究重叠。 血友病。 2016; 22:E36 - 8。 [4] Fischer K,Lassila R,Peyvandi F,Calizzani G,Gatt A,Lambert T等。 根据浓缩物的抑制剂发展:欧洲血友病安全监测(EUHASS)项目的四年结果。 血栓止血。 2015; 113:968 - 75。 [5] Gouw SC,Van der Bom JG,Ljung R,Escuriola C,Cid AR,Claeyssens- Donadel S等。 因子VIII产品和严重血友病的抑制剂发育。 2013; 368:231 - 9。 [6] Peyvandi F,Mannucci PM,Garagiola I,El-Beshlawy A,Elalfy M,Ramanan V等。 对因子VIII和中和抗体的随机试验A. N Engl J Med。 2016; 374:2054 - 64。 [7] Hassan S,Cannav o A,Gouw SC,Rosendaal FR,Van der Bom JG。 因子VIII产品和抑制剂的发育率是严重或中度严重的血友病A:一种系统综述。 J血栓止血。 2018; 16:1055 - 68。 [8] Makris M,Calizzani G,Fischer K,Gilman EA,Hay CR,Lassila R等。 螺栓res。 2011; 127:S22 - 5。Hae-Matologica。2021; 106:123 - 9。[3] Fischer K,Iorio A,Hollingsworth R,Makris M,Euhass合作者。FVIII抑制剂根据浓度的开发:Euhass注册中心的数据不包括与其他研究重叠。血友病。2016; 22:E36 - 8。 [4] Fischer K,Lassila R,Peyvandi F,Calizzani G,Gatt A,Lambert T等。 根据浓缩物的抑制剂发展:欧洲血友病安全监测(EUHASS)项目的四年结果。 血栓止血。 2015; 113:968 - 75。 [5] Gouw SC,Van der Bom JG,Ljung R,Escuriola C,Cid AR,Claeyssens- Donadel S等。 因子VIII产品和严重血友病的抑制剂发育。 2013; 368:231 - 9。 [6] Peyvandi F,Mannucci PM,Garagiola I,El-Beshlawy A,Elalfy M,Ramanan V等。 对因子VIII和中和抗体的随机试验A. N Engl J Med。 2016; 374:2054 - 64。 [7] Hassan S,Cannav o A,Gouw SC,Rosendaal FR,Van der Bom JG。 因子VIII产品和抑制剂的发育率是严重或中度严重的血友病A:一种系统综述。 J血栓止血。 2018; 16:1055 - 68。 [8] Makris M,Calizzani G,Fischer K,Gilman EA,Hay CR,Lassila R等。 螺栓res。 2011; 127:S22 - 5。2016; 22:E36 - 8。[4] Fischer K,Lassila R,Peyvandi F,Calizzani G,Gatt A,Lambert T等。根据浓缩物的抑制剂发展:欧洲血友病安全监测(EUHASS)项目的四年结果。血栓止血。2015; 113:968 - 75。 [5] Gouw SC,Van der Bom JG,Ljung R,Escuriola C,Cid AR,Claeyssens- Donadel S等。 因子VIII产品和严重血友病的抑制剂发育。 2013; 368:231 - 9。 [6] Peyvandi F,Mannucci PM,Garagiola I,El-Beshlawy A,Elalfy M,Ramanan V等。 对因子VIII和中和抗体的随机试验A. N Engl J Med。 2016; 374:2054 - 64。 [7] Hassan S,Cannav o A,Gouw SC,Rosendaal FR,Van der Bom JG。 因子VIII产品和抑制剂的发育率是严重或中度严重的血友病A:一种系统综述。 J血栓止血。 2018; 16:1055 - 68。 [8] Makris M,Calizzani G,Fischer K,Gilman EA,Hay CR,Lassila R等。 螺栓res。 2011; 127:S22 - 5。2015; 113:968 - 75。[5] Gouw SC,Van der Bom JG,Ljung R,Escuriola C,Cid AR,Claeyssens- Donadel S等。因子VIII产品和严重血友病的抑制剂发育。2013; 368:231 - 9。 [6] Peyvandi F,Mannucci PM,Garagiola I,El-Beshlawy A,Elalfy M,Ramanan V等。 对因子VIII和中和抗体的随机试验A. N Engl J Med。 2016; 374:2054 - 64。 [7] Hassan S,Cannav o A,Gouw SC,Rosendaal FR,Van der Bom JG。 因子VIII产品和抑制剂的发育率是严重或中度严重的血友病A:一种系统综述。 J血栓止血。 2018; 16:1055 - 68。 [8] Makris M,Calizzani G,Fischer K,Gilman EA,Hay CR,Lassila R等。 螺栓res。 2011; 127:S22 - 5。2013; 368:231 - 9。[6] Peyvandi F,Mannucci PM,Garagiola I,El-Beshlawy A,Elalfy M,Ramanan V等。对因子VIII和中和抗体的随机试验A. N Engl J Med。2016; 374:2054 - 64。 [7] Hassan S,Cannav o A,Gouw SC,Rosendaal FR,Van der Bom JG。 因子VIII产品和抑制剂的发育率是严重或中度严重的血友病A:一种系统综述。 J血栓止血。 2018; 16:1055 - 68。 [8] Makris M,Calizzani G,Fischer K,Gilman EA,Hay CR,Lassila R等。 螺栓res。 2011; 127:S22 - 5。2016; 374:2054 - 64。[7] Hassan S,Cannav o A,Gouw SC,Rosendaal FR,Van der Bom JG。因子VIII产品和抑制剂的发育率是严重或中度严重的血友病A:一种系统综述。J血栓止血。2018; 16:1055 - 68。 [8] Makris M,Calizzani G,Fischer K,Gilman EA,Hay CR,Lassila R等。 螺栓res。 2011; 127:S22 - 5。2018; 16:1055 - 68。[8] Makris M,Calizzani G,Fischer K,Gilman EA,Hay CR,Lassila R等。螺栓res。2011; 127:S22 - 5。Euhass:欧洲血友病安全监视系统。[9] Fischer K,Lewandowski D,Marijke Van Den Berg H,Janssen MP。使用注册表数据评估幼崽中抑制剂发展的有效性:Euhass项目。血友病。2012; 18:e241 - 6。[10] Medcalc。Medcalc软件有限公司比较两个率。https://www.medcalc.org/calc/rate_comparison.php [版本22.019; 2024年2月1日访问]。[11] Hay CRM,Palmer B,Chalmers E,Liesner R,Maclean R,Rangarajan S等。在英国严重的血友病中,VIII因子抑制剂的发生率。血。2011; 117:6367 - 70。[12] Krishnamoorthy S,Liu T,Drager D,Patarroyo-White S,Chabra ES,Peters R等。重组因子VIII FC(RFVIIIFC)融合蛋白降低了免疫原性并诱导血友病A小鼠的耐受性。细胞免疫。 2016; 301:30 - 9。 [13] Blumberg RS,Lillicrap D. IgG FC部分的耐受性特性及其与血液中的治疗和管理相关性。 血。 2018; 131:L2205 - 14。 [14] Sherman A,Bertolini TB,Arisa S,Herzog RW,KaczmarekR。皮肤质量抑制剂形成中的IX因子IX给药,并使血友病B小鼠对系统性因子IX给药。 res练习血栓止血。 2023; 7:102248。 [15] Nolan B,Klukowska A,Shapiro A,Rauch A,Recht M,Ragni M等。 血液副词。 2021; 5:2732 - 9。 [16]KönigsC,Ozelo MC,Dunn A,Kulkarni R,Nolan B,Brown SA等。细胞免疫。2016; 301:30 - 9。 [13] Blumberg RS,Lillicrap D. IgG FC部分的耐受性特性及其与血液中的治疗和管理相关性。 血。 2018; 131:L2205 - 14。 [14] Sherman A,Bertolini TB,Arisa S,Herzog RW,KaczmarekR。皮肤质量抑制剂形成中的IX因子IX给药,并使血友病B小鼠对系统性因子IX给药。 res练习血栓止血。 2023; 7:102248。 [15] Nolan B,Klukowska A,Shapiro A,Rauch A,Recht M,Ragni M等。 血液副词。 2021; 5:2732 - 9。 [16]KönigsC,Ozelo MC,Dunn A,Kulkarni R,Nolan B,Brown SA等。2016; 301:30 - 9。[13] Blumberg RS,Lillicrap D. IgG FC部分的耐受性特性及其与血液中的治疗和管理相关性。血。2018; 131:L2205 - 14。 [14] Sherman A,Bertolini TB,Arisa S,Herzog RW,KaczmarekR。皮肤质量抑制剂形成中的IX因子IX给药,并使血友病B小鼠对系统性因子IX给药。 res练习血栓止血。 2023; 7:102248。 [15] Nolan B,Klukowska A,Shapiro A,Rauch A,Recht M,Ragni M等。 血液副词。 2021; 5:2732 - 9。 [16]KönigsC,Ozelo MC,Dunn A,Kulkarni R,Nolan B,Brown SA等。2018; 131:L2205 - 14。[14] Sherman A,Bertolini TB,Arisa S,Herzog RW,KaczmarekR。皮肤质量抑制剂形成中的IX因子IX给药,并使血友病B小鼠对系统性因子IX给药。res练习血栓止血。2023; 7:102248。[15] Nolan B,Klukowska A,Shapiro A,Rauch A,Recht M,Ragni M等。血液副词。2021; 5:2732 - 9。[16]KönigsC,Ozelo MC,Dunn A,Kulkarni R,Nolan B,Brown SA等。幼崽B长研究的最终结果:评估先前未经治疗的血友病患者RFIXFC的安全性和效果。在先前未经治疗的血友病A:幼犬A-long-Long-最终结果中,首次研究了延长的半衰期RFVIIIFC。血。2022; 139:3699 - 707。[17] Fischer K,Lassila R,Peyvandi F,Gatt A,Hollingsworth R,Lambert T等。根据严重的血友病中的浓度开发抑制剂:对1392年以前未经欧洲和加拿大未经治疗的人进行报告。res练习血栓止血。2023; 7:E102265。
J. Rodriguez-Pacheco 1 , R. F. F. F. M. M. M. M. M. M Curse 2, L. Panitzsch 2, St. Boden 2, St. I. I. Bötcher Böhm 2 , J. J. Blanco 1 , W Gutierrez 1 , D. K. Haggerty 3 , J. R. Heber 3 , B. Heber 2 , M. E Hill 3 , M. Jungling 2 , S. Kerem 3 , V. Knierim J. Lees 3,St.Liang 3,A。Greece 1,D Russu 1,I。Sánchez1,C S. Horbury 6,B。Clecker 16,K.-L。 Klein 8,E,O。Gevin 24,N。Gopalswamy 26,Y。主题10,St. Hofmeister 9,N。Vilmer 8,A。P. Walsh 7,L。Wang 13,M。Wiedenbeck 15,K。Wirth 14和Q. Zong Zong Zong Zong
Dóm tér 9,匈牙利 电子邮件:galbx@chem.u-szeged.hu 摘要 激光诱导击穿光谱 (LIBS) 是原子光谱中一种强大且蓬勃发展的分析技术。尽管 LIBS 也适用于气态、气溶胶和液体样品,但它主要用于固体样品的分析。这是因为所有其他类型的样品在灵敏度和实用性方面都带来了多重挑战。(批量)液体样品的分析尤其具有挑战性,因为它们容易出现聚焦困难、飞溅、等离子猝灭等,导致检测限和重现性降低以及激光能量需求大幅增加 [1]。为了应对这些挑战,文献中报道了多种方法。它们中的大多数依赖于液固转化,而另一些则使用专门的设备将液体呈现为射流、薄膜或液滴等。[2, 3]。尽管如此,虽然消除了批量液体分析的一些缺点,但迄今为止提出的方法在灵敏度、重现性或实用性方面与固体分析相比仍然存在不足。在本研究中,我们提出了一种通过 LIBS 分析液体微样品的替代方法,即利用亲水性强的纳米多孔玻璃作为基底。这种方法的前提是毛细管力会将与玻璃接触的任何水样驱赶到纳米孔中,形成一个细小的两相结构,其中的固体玻璃框架实际上充当激光目标。这种结构在实践中有多种优势:a.) 分析需要非常少量的液体样品(5-10 µ L);b.) 不存在批量液体样品的常见问题;c.) 纳米级结构确保有效的激光耦合和液体样品的均匀分布,从而有利于重现性。对这种直接液体分析方法进行了彻底的研究,研究了分析优势和能力以及可实现的检测限和重现性。致谢作者非常感谢 EKÖP-24-I 提供的资金支持。塞格德大学的大学研究奖学金计划,以及国家研究、开发和创新办公室 (NKFIH) 的 K146733 项目和由奥地利英飞凌科技股份公司在 IPCEI 微电子课程中资助的工业合作参考文献 [1] G. Galbács,Anal. Bioanal. Chem. 407 (2015) 7537。 [2] K. Keerthi,SD George,SD Kulkarni,S. Chidangli,VK Unnikrishnan,Opt. Laser Technol. 147,(2022) 107622。 [3] I. Goncharova,D. Guichaoua,S. Taboukhat,A. Tarbi 等,Spectrochim. Acta B 217 (2024) 106943。
[1] 人工智能已成为主流——让我们创新和规范吧 https://www.scmagazine.com/perspective/emerging-technology/ai-has-gone-mainstrea m-so-lets-innovate-and-regulate [2] Chubb, J.、Cowling, P. 和 Reed, D. (2022)。加快步伐以跟上:探索人工智能在研究过程中的应用。人工智能与社会,37(4),1439-1457。DOI:10.1007/s00146-021-01259-0 [3] Morris, MR (2023)。科学家对生成式人工智能在其领域潜力的看法。arXiv 预印本 arXiv:2304.01420。[4] Guice, J. 和 Duffy, R. (2000)。互联网在科学领域的未来 [5] Kitchenham, B.、Brereton, OP、Budgen, D.、Turner, M.、Bailey, J. 和 Linkman, S. (2009)。软件工程中的系统文献综述——系统文献综述。信息与软件技术,51(1),7-15。[6] Marshall, C.、Brereton, P. 和 Kitchenham, B. (2014 年 5 月)。支持软件工程系统综述的工具:特征分析。第 18 届软件工程评估与评定国际会议论文集(第 1-10 页)。[7] Steyerberg, EW (2008)。预测模型的验证。临床预测模型,299-311。 doi:10.1007/978-0-387-77244-8_17 [8] Majid, MAA、Othman, M.、Mohamad, SF、Lim, SAH 和 Yusof, A. (2017)。定性研究中的访谈试点:操作化和经验教训。国际商业与社会科学学术研究杂志,7(4),1073-1080。[9] 转录一小时的音频或视频需要多长时间?https://www.rev.com/blog/resources/how-long-does-it-take-to-transcribe-audio-video [10] 转录一次采访需要多长时间? https://www.amberscript.com/en/blog/how-long-does-it-take-to-transcribe-1-hour-of-a udio/ [11] WIDODO,Handoyo Puji。访谈数据转录的方法论考虑。国际英语语言教学与研究创新杂志,第 3 卷,第 1 期,第 101-107 页,2014 年。 [12] REIS,Sofia;ABREU,Rui;PASAREANU,Corina。安全提交消息是否具有信息量?还不够!在:第 27 届国际评估与评估会议论文集 [13] RAMTEKE,Jyoti 等人。使用 Twitter 情绪分析预测选举结果。在:2016 年国际发明计算技术会议(ICICT)。IEEE,2016 年,第 1-5 页。 [14] MITE-BAIDAL,Karen 等人。教育领域的情绪分析:系统文献综述。在:技术与创新国际会议。Cham:Springer International Publishing,2018 年,第 285-297 页。[15] ZUNIC,Anastazia;CORCORAN,Padraig;SPASIC,Irena。健康和福祉中的情绪分析:系统综述。JMIR 医学信息学,第 8 卷,第 1 期,第 e16023 页,2020 年。[16] RAMBOCAS,Meena;PACHECO,Barney G. 市场营销研究中的在线情绪分析:综述。互动营销研究杂志,第 12 卷,第 2 期,第 146-163 页,2018 年。[17] WANKHADE,Mayur;RAO,Annavarapu Chandra Sekhara;KULKARNI,Chaitanya。情绪分析方法、应用和挑战调查。《人工智能评论》,第 55 卷,第 7 期,第 5731-5780 页,2022 年。
苏迪普托;巴斯,拉维·N;戈萨尔,苏吉特; Padmanabham,G 智能制造杂志,2018,29,175-190 54. Sahoo, Santosh Kumar;比绍伊,比布杜塔;莫汉蒂,乌彭德拉·库马尔; Sahoo,Sushant Kumar;萨胡,贾姆贝斯瓦尔;沐浴,拉维·纳图拉姆 (Ravi Nathuram);激光束焊接对工业纯钛微观结构和力学性能的影响印度金属研究所学报 70 1817-1825 2017 55. S. Pradheebha、R. Unnikannan、Ravi N. Bathe、K. Chandra Devi、G. Padmanabham 和 R. Subasri;纹理对溶胶-凝胶纳米复合涂层表面润湿性的影响国家技术杂志 13 3 19-23 2017 56. Narsimhachary,D;巴斯,RN; Dutta Majumdar,J;帕德马纳巴姆,G;巴苏,A; 6061-T6铝合金双道激光焊缝组织与力学性能。工程中的激光 (Old City Publishing) 33 2016 57. Rikka, Vallabha Rao; Sahu,Sumit Ranjan;塔德帕利,拉贾帕;巴斯,拉维;莫汉,泰雅加拉詹;普拉卡什,拉朱;帕德玛纳布姆,加德;戈帕兰,拉加万;用于锂离子电池外壳的脉冲激光焊接不锈钢和铝合金的微观结构和力学性能 J Mater Sci Eng B 6 9–10 218-225 2016 58. Moharana, Bikash Ranjan; Sahu,Sushanta Kumar; Sahoo,Susanta Kumar;巴斯,拉维;通过 CO2 激光对 AISI 304 至 Cu 接头的机械和微观结构性能的实验研究工程科学与技术,国际期刊 19 2 684-690 2016 59. Bathe, Ravi;赛克里希纳,V;尼库姆布,SK; Padmanabham,GJAPA;灰铸铁的激光表面纹理化以改善摩擦学行为应用物理 A 117 117-123 2014 60. Bathe, R;帕德马纳巴姆,G;热障涂层高温合金中激光钻孔的评估材料科学与技术 30 14 1778-1782 2014 61. Bathe, Ravi;辛格,阿希什 K;帕德马纳巴姆,G;脉冲激光修整金属结合剂金刚石砂轮对切削性能的影响材料与制造工艺 29 3 386-389 2014 62. Narsimhachary,D;巴斯,拉维·N;帕德马纳巴姆,G;巴苏,A; 6061 T6铝合金激光焊接温度分布对微观组织和力学性能的影响材料与制造工艺 29 8 948-953 2014 63. Yagati, Krishna P;巴斯,拉维·N; Rajulapati,Koteswararao V; Rao,K Bhanu Sankara;帕德马纳巴姆,G;铝合金与钢的无焊剂电弧焊接钎焊材料加工技术杂志 214 12 2949-2959 2014 64. Nikumb, Suwas;巴斯,拉维;克诺夫,乔治 K;汽车、柔性电子和太阳能领域的激光微加工技术 太阳能、显示器和光电子设备的激光加工和制造 III 9180 17-26 2014 65. Padmanabham, G;克里希纳·普里亚,Y;帕尼·普拉巴卡,KV;拉维,N;洗澡,BhanuSankara Rao;P-MIG 和冷金属转移 (CMT) 工艺制成的铝钢接头界面特性和力学性能比较焊接研究趋势:第 9 届国际会议论文集 227-234 2013 66. Bathe, G. Padmanabham 和 Ravi;材料激光加工的应用 Kiran 24 2 2013 年 3 月 14 日 67. Padmanabham, G; Priya, Y Krishna; Prabhakar, KV Phani; Bathe, Ravi N;脉冲 MIG 和冷金属转移 (CMT) 工艺制成的铝钢接头界面特性和力学性能比较焊接研究趋势 2012:第 9 届国际会议论文集 227 2013 68. Chaki, Sudipto;Ghosal, Sujit; Bathe, Ravi N; 使用 GA-ANN 混合模型对脉冲 Nd:YAG 激光切割铝合金板的切口质量预测和优化国际机电一体化与制造系统杂志 5 4-Mar 263-279 2012 69. Sanikommu, Nirmala;Bathe, Ravi;Joshi, AS;激光冲击钻孔中的突破检测。工程激光(Old City Publishing)17 2007 70. Jejurikar, Suhas M;Banpurkar, AG;Limaye, AV;Patil, SI;Adhi, KP;Misra, P;Kukreja, LM;Bathe, Ravi;通过脉冲激光沉积在 Si(100)上沉积的异质外延 ZnO 薄膜的结构、形态和电学特性:空气中退火(800 C)的影响 应用物理学杂志 99 1 2006 71. Sahasrabudhe, MS; Patil, SI; Date, SK; Adhi, KP; Kulkarni, SD; Joy, PA; Bathe, RN;磁性(Fe+ 3)和非磁性(Ga+ 3)离子掺杂在 Mn 位对 La0. 7Ca0. 3MnO3 传输和磁性的影响 固态通信 137 11 595-600 2006 72. Ogale, SB; Bathe, RN; Choudhary, RJ; Kale, SN; Ogale, Abhijit S; Banpurkar, AG; Limaye, AV;边界效应对薄沉降颗粒堆稳定性的影响 Physica A: 统计力学及其应用 354 49-58 2005 73. Alves, G; Doerr, TP; Arenzon, JJ; Levin, Y; Avelar, AT; Monteiro, PB; Bai, BD; Jiang, W; Banpurkar, AG; Ogale, SB;第 354 卷作者和论文索引 psychology 354 463 2005 74. Sahasrabudhe, MS; Bathe, RN; Sadakale, SN; Patil, SI; Date, SK; Ogale, SB;La0. 7Ca0. 3MnO3 中 Mn 位金属离子取代的影响:电荷、自旋、离子半径和Ravi N; 使用 GA-ANN 混合模型对脉冲 Nd:YAG 激光切割铝合金板的切口质量预测和优化国际机电一体化与制造系统杂志 5 4-Mar 263-279 2012 69. Sanikommu, Nirmala;Bathe, Ravi;Joshi, AS;激光冲击钻孔中的突破检测。工程激光(Old City Publishing)17 2007 70. Jejurikar, Suhas M;Banpurkar, AG;Limaye, AV;Patil, SI;Adhi, KP;Misra, P;Kukreja, LM;Bathe, Ravi;通过脉冲激光沉积在 Si(100)上沉积的异质外延 ZnO 薄膜的结构、形态和电学特性:空气中退火(800 C)的影响 应用物理学杂志 99 1 2006 71. Sahasrabudhe, MS; Patil, SI; Date, SK; Adhi, KP; Kulkarni, SD; Joy, PA; Bathe, RN;磁性(Fe+ 3)和非磁性(Ga+ 3)离子掺杂在 Mn 位对 La0. 7Ca0. 3MnO3 传输和磁性的影响 固态通信 137 11 595-600 2006 72. Ogale, SB; Bathe, RN; Choudhary, RJ; Kale, SN; Ogale, Abhijit S; Banpurkar, AG; Limaye, AV;边界效应对薄沉降颗粒堆稳定性的影响 Physica A: 统计力学及其应用 354 49-58 2005 73. Alves, G; Doerr, TP; Arenzon, JJ; Levin, Y; Avelar, AT; Monteiro, PB; Bai, BD; Jiang, W; Banpurkar, AG; Ogale, SB;第 354 卷作者和论文索引 psychology 354 463 2005 74. Sahasrabudhe, MS; Bathe, RN; Sadakale, SN; Patil, SI; Date, SK; Ogale, SB;La0. 7Ca0. 3MnO3 中 Mn 位金属离子取代的影响:电荷、自旋、离子半径和Ravi N; 使用 GA-ANN 混合模型对脉冲 Nd:YAG 激光切割铝合金板的切口质量预测和优化国际机电一体化与制造系统杂志 5 4-Mar 263-279 2012 69. Sanikommu, Nirmala;Bathe, Ravi;Joshi, AS;激光冲击钻孔中的突破检测。工程激光(Old City Publishing)17 2007 70. Jejurikar, Suhas M;Banpurkar, AG;Limaye, AV;Patil, SI;Adhi, KP;Misra, P;Kukreja, LM;Bathe, Ravi;通过脉冲激光沉积在 Si(100)上沉积的异质外延 ZnO 薄膜的结构、形态和电学特性:空气中退火(800 C)的影响 应用物理学杂志 99 1 2006 71. Sahasrabudhe, MS; Patil, SI; Date, SK; Adhi, KP; Kulkarni, SD; Joy, PA; Bathe, RN;磁性(Fe+ 3)和非磁性(Ga+ 3)离子掺杂在 Mn 位对 La0. 7Ca0. 3MnO3 传输和磁性的影响 固态通信 137 11 595-600 2006 72. Ogale, SB; Bathe, RN; Choudhary, RJ; Kale, SN; Ogale, Abhijit S; Banpurkar, AG; Limaye, AV;边界效应对薄沉降颗粒堆稳定性的影响 Physica A: 统计力学及其应用 354 49-58 2005 73. Alves, G; Doerr, TP; Arenzon, JJ; Levin, Y; Avelar, AT; Monteiro, PB; Bai, BD; Jiang, W; Banpurkar, AG; Ogale, SB;第 354 卷作者和论文索引 psychology 354 463 2005 74. Sahasrabudhe, MS; Bathe, RN; Sadakale, SN; Patil, SI; Date, SK; Ogale, SB;La0. 7Ca0. 3MnO3 中 Mn 位金属离子取代的影响:电荷、自旋、离子半径和SB;第 354 卷作者和论文索引 心理学 354 463 2005 74. Sahasrabudhe,MS;Bathe,RN;Sadakale,SN;Patil,SI;Date,SK;Ogale,SB;La0.7Ca0.3MnO3 中 Mn 位金属离子取代的影响:电荷、自旋、离子半径和SB;第 354 卷作者和论文索引 心理学 354 463 2005 74. Sahasrabudhe,MS;Bathe,RN;Sadakale,SN;Patil,SI;Date,SK;Ogale,SB;La0.7Ca0.3MnO3 中 Mn 位金属离子取代的影响:电荷、自旋、离子半径和
该研讨会旨在建立一个围绕新兴人类协同进化领域(HAIC)建立一个多学科研究界,以了解从连续和长期的人类互动中出现的反馈回路。随着AI系统已经变得越来越普遍,并且在较长时期内已经存在于社会中,来自不同领域和方法论的学者开始着重于海克及其对系统建筑,人类反馈,调节和其他领域的重要性(例如Damiano&Dumouchel,2018; j arvel e等。,2023; Matsubara等。,2023; Donati,2021年; Zhao等。,2024)。通过这个研讨会,我们希望为该研究议程奠定合作基础。为了实现这一目标,我们将组织来自学术界和行业的专家谈判,动态小组讨论,主动的突破性会议和网络机会,借鉴我们多样化的经验,组织了在ML,NLP,HCI和相关领域的领先会议上组织相关研讨会。跨越包括算法,推荐系统和大型语言模型(LLMS)在内的各种领域,该研讨会挑战了AI的传统观点,仅作为通过人类提供的信号改善的工具(Anthis等人,2024; Chang等。,2024; Kulkarni&Rodd,2020年; Mehrabi等。,2021; Chang等。,2023; Meimandi等。,2023);取而代之的是,它还将调查人类如何改变其行为,决策过程和认知框架,以应对与AI的长期互动以及如何响应人为随着时间的变化而开发AI系统(Gabriel等人(Gabriel等)(Gabriel等人),2024)。,2024; Subramonyam等。,2024; Wu等。,2023; Zhao等。对HAIC的研究需要超越AI基准的典型性能指标,从而探索了多个分析。从低水平的角度来看,海克可以随着双向学习过程的重塑行为而随着时间的流逝而随着时间的流逝而发生的HAIC(Liu等人,2024a; Maples等。,2024; Mozannar等。,2023; Reuel等。,2024b)。此共同进化也出现在建模层面:随着“金”网刻度训练数据集被已经生成的输出,新的行为和风险污染了(Gerstgrasser等人。,2024; Shumailov等。,2024)。从高级的角度来看,它可能涉及许多人的长期互动(Ge等人,2024;刘等。,2024c)和AI代理(Park等人,2023; Wu等。,2023年)及其对社会机构的影响,例如医疗保健(Bica等人,2021; Grote&Keeling,2022年; Vaidyam等。,2019年),教育(Roll&Wylie,2016; Yang等人,2013,2015),运输(Keeling等人,2019年; Keeling,2020;刘等。,2022,2023)和刑事司法(Jacobs&Wallach,2021; Marx等人,2020)。这种多学科的多层次方法反映在研究问题,主题和专家小组成员和演讲者的选择中。开放问题我们将讨论和辩论包括:
保留培训数据的隐私已成为一个重要的考虑因素,现在对于机器学习算法来说是一项艰巨的任务。要解决隐私问题,依从于密码学的差异隐私(DP)(Dwork等,2006)是一个强大的数学保存计划。它允许进行丰富的统计和机器学习分析,现在正成为私人数据分析的事实上的符号。保证差异隐私的方法已被广泛研究,最近在行业中采用(Tang等,2017; Ding等,2017)。作为机器学习和差异隐私社区中最重要的问题之一,在过去的十年中,DP模型中的经验风险最小化问题(即DP-erm)在(Chaudhuri等人,2011年)开始,已经在过去的十年中进行了很好的研究,例如(Bassily等,2014; Bassily等,2014; Wang et ant; Jin,2016年,Kifer等人,2017年,Wang等人,2018a,2019b;dp-dp-erm,其人口(或预期)版本,即私人的固定式凸优化(DP-SCO),近年来从(Bassily等,2014)开始受到很多关注。特定于(Bassily等,2019)首先提供了DP-SCO的最佳速率,具有(ϵ,δ)-DP的一般凸损耗函数,这与DP-MERM中最佳速率不同。后来(Feldman等,2020)通过提供一般性定位技术,将此问题扩展到强烈凸出和(或)非平滑案例。此外,如果损耗函数平滑,它们的方法具有线性时间复杂性。对于非平滑损失函数,(Kulkarni等,2021)最近提出了一种仅需要亚限级梯度复杂性的新方法。虽然已经有大量有关DP-SCO的研究,但问题仍然远远不够知名度。一个关键的观察结果是,所有以前的作品仅着眼于损失函数是一般凸或强凸的情况。但是,还有许多问题甚至比强凸功能强,或者落在凸功能和强烈凸功能之间。在非私人对应物中,各种研究试图通过对损失函数施加其他假设来获得更快的速度。并且已经表明,实现比一般凸损失函数速率快的速率确实可以(Yang等,2018; Koren and Levy,2015; van Erven等,2015),或者甚至可以达到与强凸的强劲速率相同的速率,即使函数也不强劲,karimi et al al an al al an al al and act al and act al and act an al al an al an al an al al an al al an al al al al al al al al al al al al al al al al al al al al al al al al al al a al al a al al act 201 v exe et a al and lie et as act 2010 8。 Al。,2017)。以此为动机,我们的问题是,对于具有特殊类别的人口风险功能的DP-SCO问题,是否有可能比一般凸的最佳人口和(或(或)强烈凸出案例的最佳人口风险率更快?在本文中,我们通过研究一些类别的人口风险功能来提供有效的答案。尤其是,我们将主要关注种群风险功能满足Tysbakov噪声条件(TNC)1的情况,其中包括强烈凸功能,SVM,SVM,ℓ1频繁的随机性优化和线性回归为特殊情况
本概况文件概述了美国能源部先进材料和制造技术办公室 (AMMTO) 跨领域高性能材料研究、开发和演示 (RD&D) 投资机会的建议。该概况由下列人员制定:下一代材料与工艺 (NGMP) 恶劣环境材料技术经理 J. Nick Lalena;爱达荷国家实验室 (INL) 代表 Emmanuel Ohene Opare、Gabriel Oiseomoje Ilevbare 和 Anthony Dale Nickens;国家可再生能源实验室 (NREL) 代表 Kerry Rippy 和 Dennice Roberts;橡树岭国家实验室 (ORNL) 代表 William H. Peter、Amit Shyam、Sebastien N. Dryepondt 和 Yarom Polsky;太平洋西北国家实验室 (PNNL) 代表 David W. Gotthold 和 Isabella Johanna van Rooyen;以及 BGS 顾问 Stewart Wilkins。整个部门和这些国家实验室的成员都为该概况做出了重大贡献。其他贡献者包括 AMMTO 的 Alexander Kirk、Huijuan Dai、Diana Bauer 和 Chris Saldaña;AMMTO 承包商 Matt Roney 和 Dwight Tanner;核能办公室 (NE) 的 Dirk Cairnes Gallimore;汽车技术办公室 (VTO) 的 Jerry Gibbs;风能技术办公室 (WETO) 的 Tyler Christoffel;水力技术办公室 (WPTO) 的 Collin Sheppard 和 Colin Sasthav;地热技术办公室 (GTO) 的 Kevin Jones 和 Douglas Blankenship;太阳能技术办公室 (SETO) 的 Kamala Raghavan 和 Matthew Bauer;氢能和燃料电池技术办公室 (HFTO) 的 Nikkia McDonald;阿贡国家实验室 (ANL) 的 Aaron Grecco;以及国家可再生能源实验室 (NREL) 的 Shawan Sheng 和 Jonathan Keller。学术和工业界的贡献者包括博伊西州立大学的 David Estrada;科罗拉多矿业学院的 Zhenzhen Yu;西北大学的 Scott Barnett;德克萨斯 A&M 大学的 Don Lipkin;加州大学洛杉矶分校/高级研究计划署 E 项目的 Laurent Pilon;匹兹堡大学的 Albert To;田纳西大学诺克斯维尔分校的 Steven John Zinkle;弗吉尼亚大学的 Elizabeth Opila;西弗吉尼亚大学的 Shanshan Hu;阿勒格尼技术公司的 Merritt Osborne;Bayside Materials Technology 的 Doug Freitag;BWX Technologies, Inc 的 Scott Shargots 和 Joe Miller;Ceramic Tubular Products LLC 的 Jeff Halfinger;Commonwealth Fusion Systems 的 Trevor Clark;挪威船级社的 Chris Taylor;电力研究院的 David W. Gandy、Marc Albert 和 John Shingledecker;Equinor 的 Rune Godoy;Fluor 的 Gary Cannell;Free Form Fibers 的 Jeff Vervlied;通用原子公司的 Hesham Khalifa 和 Ron S. Fabibish;通用电气的 Lillie Ghobrial、Jason Mortzheim、Patrick Shower、Akane Suzuki、Shenyan Huang 和 Jason Mortzheim;哈里伯顿的 Kyris Apapiou 和 Thomas Pislak;Hatch 的 Gino de Villa;肯纳金属公司的 Paul Prichard。;林肯电气公司的 Badri Narayanan;金属粉末工业联合会的 James Adams 和 Bill Edwards;Metal Power Works 的 John Barnes;Pixelligent Technologies LLC 的 Robert J. Wiacek;雷神技术公司的 Alison Gotkin 和 Prabhjot Singh;Roboze 的 Arash Shadravan;Saferock 的 Torbjorn Vralstad;圣戈班的 John Pietras;斯伦贝谢的 Anatoly Medvedev;西门子公司的 Anand Kulkarni;钢铁贸易公司的 Doug Marmaro;泰纳瑞斯的 Gonzalo Rodriguez Jordan;巴恩斯全球顾问公司的 Kevin Slattery;Timet 的 WIlliam MacDonald;Timken Steel 的 Carly Antonucci;Ultra Safe Nuclear 的 Kurt Terrani;北德克萨斯大学的 Rajarshi Bannerje;以及福伊特水电的 Seth Smith。