作者 JM Fukuto · 2020 · 被引用 22 次 — Shinkai Y 和 Kumagai Y。硫烷硫在毒理学中的作用:一种对抗亲电应激的新型防御系统。毒理学。Sci 170:3–9,2019。67 ...
Mayuko Yukiura,博士; Kohei Takano,M.S;高桥大桥(Kazuki Takahashi)博士; Michiko Kitamura; Kazunori Oyama博士; Kokichi Honda,D.V.M。 div> ; Yoshinobu Shiose博士,MBA。 div> ; Wataru Obuchi博士; Yamada Makiko博士; Ken Sakurai D.V.M.,博士; Kazuyoshi Kumagai D.V.M.,博士; Riki Goto; Akiko Zizebustu博士; Takashi Kagari博士; Abe Yuki Abe博士; Toshinori Agatsuma博士 div>Mayuko Yukiura,博士; Kohei Takano,M.S;高桥大桥(Kazuki Takahashi)博士; Michiko Kitamura; Kazunori Oyama博士; Kokichi Honda,D.V.M。 div>; Yoshinobu Shiose博士,MBA。 div>; Wataru Obuchi博士; Yamada Makiko博士; Ken Sakurai D.V.M.,博士; Kazuyoshi Kumagai D.V.M.,博士; Riki Goto; Akiko Zizebustu博士; Takashi Kagari博士; Abe Yuki Abe博士; Toshinori Agatsuma博士 div>
作者的完整列表:Chizuru Sawabe;东京大学,高级材料科学系,Shohei Frontier Sciences Kumagai研究生院;东京大学,高级材料科学系Mitani,Masato;东京大学,国内科学研究生院伊西伊(Hiroyuki); Masakazu的Tsukuba Yamagishi大学;美国国家技术学院,福拉玛学院萨加亚马,哈吉姆;材料结构研究所科学,高能加速器研究组织Kumai,Reiji; Hiroyasu材料结构科学研究所SATO研究所高能加速器研究组织(KEK);里格库公司(Rigaku Corporation),Takeya,Jun;东京大学,高级材料科学系,俄克冈俄克冈大学;东京大学,高级材料科学系,边境科学学院
许多亚洲国家都面临着人口老龄化社会的转变。该地区的总生育率在过去 30 年里大幅下降,老年人的寿命延长。在东南亚国家中,泰国进入老龄化社会的速度相对较快(Kumagai 2019)。从图 1 可以看出,泰国的老年抚养比在 2020 年达到 20%,而印度尼西亚、马来西亚和越南等其他东南亚国家将在以后的几年(分别在 2050 年、2040 年和 2030 年)达到这一门槛并进入老龄化社会。人口老龄化对泰国未来的财政状况和养老金制度构成了重大挑战。需要适当的收入来资助老年社会保障计划。然而,泰国拥有庞大的非正规部门,这使得扩大慷慨的养老金计划具有挑战性。
2024年11月13日,星期三,房间P(Hanabusa)(B1F)13p-1:开幕式和全体会议(9:30-12:10)椅子:Koji Asakawa(Kioxia)(Kioxia),Shinya kumagai(Meijo Univ。),Kouichi Takase(Nihon Univ。)和Tomoki Nagai(JSR)13p-1-0 9:30-9:50开幕词:Toshiyuki Tsuchiya(Kyoto Univ。)奖励演示:Toshiyuki Tsuchiya(京都大学)和Koji Asakawa(Kioxia)本地公告:Takahiro Namazu Kyoto Univ。高级Sci。)13P-1-1 9:50-10:30 Japan's Semiconductor Strategy (Plenary) Hisashi Saito, Ministry of Economy, Trade and Industry, Japan Coffee Break 13P-1-2 10:50-11:30 The next step in Moore's Law: High NA EUV is here (Plenary) Jan van Schoot, ASML, Netherlands 13P-1-3 11:30-12:10 Novel 3D Stacking Process Technologies to Evolve CMOS图像传感器(全体)Yoshihisa Kagawa和H. Iwamoto,索尼半导体解决方案公司,日本13-1-4:午餐研讨会主席:Daiyu Kondo(Fujitsu)(富士通)13p-1-4 12:20-13:20-13:10午餐会在技术展览会上
员工和其他合作研究员Akamatsu Tsuyoshi首席研究员Ishibashi Mariko访问研究员Nihon医科大学Kyoro Arai,访问研究员,11月Ito Shigeki Future Imaging Co.,Ltd.科学OHASHI RYOTARO QST研究助理(短时间)Kawamura kazuya Chiba大学Obata Fujino技术助理(短时间)Kitagawa Masaharu Kakegawa Kakegawa Makoto访问研究员Kumagai Masaaki Masaaki Masaaki Masaaki Masaaki Masaaki Masaaki Masaaki Atox Co.职位)核医学诊断治疗研究小组(退休)Shimazoe Kenji高级研究员,东京Tahisa Sou大学,10月,Suga Mikio高级研究员,Chiba University,Hideo Eiji高级研究员,Takada EIJI高级研究员,TAKADA EIJI高级研究员,全国技术学院 Kurumi Business Assistant (Short-time) Hashimoto Fumio Nishikido Fumihiko Senior Researcher, Haishi Hideaki Senior Researcher, Chiba University, Hosoya Nobuyoshi Business Assistant (Short-time), Recruited in October Hamado Akram UC Davis Deputy Director/Group Leader (Retirement) Maki Kazuhiro Senior Researcher, Yoshida Eiji Senior Researcher (Retirement年龄)Yamashita Daichi Han Gyu Kang首席研究员Yamada Kaede Atox Co.
团队非常感谢以下同行评审员提出的建设性批评意见:Annette Kyobe(国际货币基金组织驻俄罗斯联邦代表)、David Knight(世界银行高级经济学家)、Joeri Frederik de Wit(世界银行能源经济学家)、Kevin Carey(世界银行业务经理)、Maria Vagliasindi(世界银行首席经济学家)、Michael Toman(世界银行首席经济学家兼研究经理)、Nithin Umapathi(高级经济学家)和 Simon Carl O'Meally(世界银行高级治理专家)。许多人为本报告做出了贡献,并为特定章节提供了意见。 Alberto Leyton、Andrienne Hathaway-Nuton、Anya Vodopyanov、Arthur Kochnakyan、Elena Strukova Golub、Galina Kuznetsova、Maria Ovchinnikova、Saki Kumagai、Thomas Farole、Vladimir Drebentsov、Vladislava Nemova、Yadviga Semikolenova、Ilya Minyaev、Damien Boucher、Maria Macadangdang 和 Yurii梅尔尼科夫——所有人都提供了敏锐的建议和宝贵的见解。该团队衷心感谢俄罗斯联邦政府、私营部门和学术界的同行以各种形式提供的有益投入。为编写本报告,我们召开了一次有关俄罗斯能源补贴改革的专家圆桌会议,团队非常感谢与会者的富有成效的讨论和出色的评论,特别是 Vladimir Drebentsov、Valery Kryukov、Vasiliy Savin、Sergey Rozhenko、Maxim Titov、Sergei Sivaev、Igor Bashmakov、Nikolay Posypanko 和 Vyacheslav Kulagin。如有疑问,请联系团队负责人:Apurva Sanghi (asanghi@worldbank.org) 或 Jevgenijs Steinbuks (jsteinbuks@worldbank.org)。
通过同源定向修复 (HDR) 进行的基因组编辑 (GE) 可以最大程度地灵活地修改基因组。先前的基因打靶 (GT) 研究表明,将带有供体模板的 Cas9 或 Cas12a 表达盒通过基因枪递送到水稻愈伤组织中,可以使用 HDR 途径在靶位点进行精确替换或插入 (Li et al., 2016 , 2018 , 2019 ; Lu et al., 2020 )。其他研究小组还报告在玉米 (Svitashev et al., 2016 ) 和大麦 (Lawrenson et al., 2021 ) 中成功创建 GT 植物。然而,这些策略仅适用于适合细胞培养和再生的基因型。为了规避与细胞培养和再生相关的限制,我们最近开发了植物内粒子轰击 (iPB) 方法,该方法允许在小麦中进行基因型独立的基因组编辑 (Hamada 等人,2017 年;Liu 等人,2021 年)。iPB 方法利用茎尖分生组织 (SAM),其中包含注定在花发育过程中发育成生殖细胞的表皮下层 (L2) 细胞。成功将 Cas9 核糖核蛋白 (RNP) 递送到 SAM 可促进基因组编辑的发生,并可遗传给下一代 (Kumagai 等人,2022 年)。由于 SAM 具有细胞分裂活跃的特点,许多细胞处于 HDR 的先决条件 G2/M 阶段,我们假设可以通过 iPB 方法将设计的供体 DNA 与 RNP 一起递送到小麦 SAM 中,实现基于 HDR 的 GT(图 1a)。
Tollike受体:对先天免疫的最新见解和观点。免疫,57,649 - 673。4)Rehwinkel,J。&Gack,M.U。(2020)RIG-I样受体:它们在RNA传感中的调节和作用。nat。修订版免疫。,20,537 - 551。5)Venkataraman,T.,Valdes,M.,Elsby,R.,Kakuta,S.,Cace- Res,G.,Saijo,S.,Iwakura,Y。,&Barber,G.N。(2007)DEXD/H盒RNA解旋酶LGP2的损失表现出不同的抗病毒反应。J. Immunol。 ,178,6444 - 6455。 6)Satoh,T.,Kato,H.,Kumagai,Y.,Yoneyama,M.,Sato,S.,Matsushita,K.,Tsujimura,T.,Fujita,T. (2010)LGP2是RIG-II和MDA5介导的抗病毒反应的积极调节剂。 proc。 natl。 学院。 SCI。 美国,107,1512 - 1517。 7)Bruns,A.M. (2014)先天免疫传感器LGP2通过调节MDA5 - RNA相互作用和弹性组件来激活抗病毒信号传导。 mol。 单元格,55,771 - 781。 8)乌鸦,Y.J. &Stetson,D.B。 (2022)I型干扰素:10年了。 nat。 修订版 免疫。 ,22,471 - 483。 9)村上,S。 (2022)mRNA中的隐藏代码:m(6)a对基因表达的控制。摩尔。 单元格,82,2236 - 2251。 10)Ablasser,A。 &Chen,Z.J。 (2019)CGA在行动中:在免疫和炎症中扩大角色。 Science,363,EAAT8657。J. Immunol。,178,6444 - 6455。6)Satoh,T.,Kato,H.,Kumagai,Y.,Yoneyama,M.,Sato,S.,Matsushita,K.,Tsujimura,T.,Fujita,T.(2010)LGP2是RIG-II和MDA5介导的抗病毒反应的积极调节剂。proc。natl。学院。SCI。 美国,107,1512 - 1517。 7)Bruns,A.M. (2014)先天免疫传感器LGP2通过调节MDA5 - RNA相互作用和弹性组件来激活抗病毒信号传导。 mol。 单元格,55,771 - 781。 8)乌鸦,Y.J. &Stetson,D.B。 (2022)I型干扰素:10年了。 nat。 修订版 免疫。 ,22,471 - 483。 9)村上,S。 (2022)mRNA中的隐藏代码:m(6)a对基因表达的控制。摩尔。 单元格,82,2236 - 2251。 10)Ablasser,A。 &Chen,Z.J。 (2019)CGA在行动中:在免疫和炎症中扩大角色。 Science,363,EAAT8657。SCI。美国,107,1512 - 1517。7)Bruns,A.M.(2014)先天免疫传感器LGP2通过调节MDA5 - RNA相互作用和弹性组件来激活抗病毒信号传导。mol。单元格,55,771 - 781。8)乌鸦,Y.J.&Stetson,D.B。(2022)I型干扰素:10年了。nat。修订版免疫。,22,471 - 483。9)村上,S。(2022)mRNA中的隐藏代码:m(6)a对基因表达的控制。摩尔。单元格,82,2236 - 2251。10)Ablasser,A。&Chen,Z.J。(2019)CGA在行动中:在免疫和炎症中扩大角色。Science,363,EAAT8657。11)Ablasser,A。&Hur,S。(2020)调节CGAS和RLR介导的对核酸的免疫力。nat。免疫。,21,17 - 29。12)Hopfner,K.P。&Hornung,V。(2020)CGAS刺信信号传导的分子机制和细胞功能。nat。修订版mol。细胞生物。 ,21,501 - 521。 13)伦纳德(J.N.),吉兰多(R. (2008)TLR3通过合作受体二聚体信号形式。 proc。 natl。 学院。 SCI。 美国,105,258 - 263。 14) (2008)带有双链RNA的Toll样重复3信号传导的结构基础。 Science,320,379 - 381。 15)Bell,J.K.,Botos,I.,Hall,P.R。,Askins,J.,Shiloach,J.,Segal,D.M。和Davies,D.R。 (2005)Toll样受体3配体结合结构域的分子结构。 proc。 natl。 学院。 SCI。 美国,102,10976 - 10980。 16)Choe,J.,Kelker,M.S。和Wilson,I.A。 (2005)人Toll样受体3(TLR3)外生域的晶体结构。 科学,309,581 - 585。 17)塔布塔(K. (2004)Toll样受体9和3作为对小鼠巨细胞病毒感染的先天免疫防御的重要组成部分。 proc。 SCI。细胞生物。,21,501 - 521。13)伦纳德(J.N.),吉兰多(R.(2008)TLR3通过合作受体二聚体信号形式。proc。natl。学院。SCI。 美国,105,258 - 263。 14) (2008)带有双链RNA的Toll样重复3信号传导的结构基础。 Science,320,379 - 381。 15)Bell,J.K.,Botos,I.,Hall,P.R。,Askins,J.,Shiloach,J.,Segal,D.M。和Davies,D.R。 (2005)Toll样受体3配体结合结构域的分子结构。 proc。 natl。 学院。 SCI。 美国,102,10976 - 10980。 16)Choe,J.,Kelker,M.S。和Wilson,I.A。 (2005)人Toll样受体3(TLR3)外生域的晶体结构。 科学,309,581 - 585。 17)塔布塔(K. (2004)Toll样受体9和3作为对小鼠巨细胞病毒感染的先天免疫防御的重要组成部分。 proc。 SCI。SCI。美国,105,258 - 263。14)(2008)带有双链RNA的Toll样重复3信号传导的结构基础。Science,320,379 - 381。15)Bell,J.K.,Botos,I.,Hall,P.R。,Askins,J.,Shiloach,J.,Segal,D.M。和Davies,D.R。(2005)Toll样受体3配体结合结构域的分子结构。proc。natl。学院。SCI。 美国,102,10976 - 10980。 16)Choe,J.,Kelker,M.S。和Wilson,I.A。 (2005)人Toll样受体3(TLR3)外生域的晶体结构。 科学,309,581 - 585。 17)塔布塔(K. (2004)Toll样受体9和3作为对小鼠巨细胞病毒感染的先天免疫防御的重要组成部分。 proc。 SCI。SCI。美国,102,10976 - 10980。16)Choe,J.,Kelker,M.S。和Wilson,I.A。(2005)人Toll样受体3(TLR3)外生域的晶体结构。科学,309,581 - 585。17)塔布塔(K.(2004)Toll样受体9和3作为对小鼠巨细胞病毒感染的先天免疫防御的重要组成部分。proc。SCI。SCI。natl。学院。美国,101,3516 - 3521。18)Davey,G.M.,Wojtasiak,M.,Proietto,A.I.,Carbone,F.R。,Heath,W.R。,&Bedoui,S。(2010)剪切边缘:CD8 T细胞免疫的启动:Surpes Simperx Simplex Virus 1型需要Cognate Tlr3在Vivo中的表达。J. Immunol。 ,184,2243 - 2246。 19)Oshiumi,H.,Okamoto,M.,Fujii,K.,Kawanishi,T.,Matsu-Moto,M.,Koike,S。,&Seya,T。(2011)TLR3/TICAM-1途径是对Poliovi-Rus Rus Infection的先天免疫反应的强制性。 J. Immunol。 ,187,5320 - 5327。 20)张,S.Y. (2007)疱疹患者的TLR3缺乏效率 -J. Immunol。,184,2243 - 2246。19)Oshiumi,H.,Okamoto,M.,Fujii,K.,Kawanishi,T.,Matsu-Moto,M.,Koike,S。,&Seya,T。(2011)TLR3/TICAM-1途径是对Poliovi-Rus Rus Infection的先天免疫反应的强制性。J. Immunol。 ,187,5320 - 5327。 20)张,S.Y. (2007)疱疹患者的TLR3缺乏效率 -J. Immunol。,187,5320 - 5327。20)张,S.Y.(2007)疱疹患者的TLR3缺乏效率 -
2) Tsao JY、Chowdhury S、Hollis MA、Jena D、Johnson NM、Jones RJ、Kaplar S、Rajan、Van de Walle CG、Bellotti E、Chua R、Coltrin R、Cooper ME、Evans KR、Graham S、Grotjohn ER、Heller M、Higashiwaki M、Islam MS、Juodawlkis PW、Khan Khan、AD Koehler、JH Leach、UK Mishra、Nemanich RJ、Pilawa-Podgurski RCN、Shealy JB、Sitar Z、Tadjer MJ、Witulski AF、Wraback M 和 Simmons JA,Advanced Electronic Materials 4 [1],1600501 (2018)。 3)M. Higashiwaki、K. Sasaki、H. Murakami、Y. Kumagai、A. Koukitu、A. Kuramata、T. Masui 和 S. Yamakoshi,《半导体科学与技术》31 [3],034001(2016 年)。 4) Y. Yao, R. Gangireddy, J. Kim, KK Das, RF Davis 和 LM Porter,《真空科学与技术杂志》B 35 [3], 03D113 (2017)。 5) Q. He, W. Mu, H. Dong, S. Long, Z. Jia, H. Lv, Q. Liu, M. Tang, X. Tao 和 M. Liu, Applied Physics Letters 110 [9], 093503 (2017)。 6)Ahn S.、Ren F.、Yuan L.、Pearton SJ 和 Kuramata A.,ECS 固体科学与技术杂志 6 [1],P68(2017)。 7)M. Higashiwaki、K. Sasaki、A. Kuramata、T. Masui 和 S. Yamakoshi,Applied Physics Letters 100 [1],013504 (2012)。 8) M. Higashiwaki, K. Sasaki, T. Kamimura, M. Hoi Wong, D. Krishnamurthy, A. Kuramata, T. Masui 和 S. Yamakoshi, 应用物理快报 103 [12], 123511 (2013)。 9)WS Hwang, A. Verma, H. Peelaers, V. Protasenko, S. Rouvimov, H. (Grace) Xing, A. Seabaugh, W. Haensch, CV de Walle, Z. Galazka, M. Albrecht, R. Fornari 和 D. Jena, 应用物理快报 104[20], 203111 (2014). https://doi.org/10.1016/S0022-5376(02)00011-0 , Google 学术 Crossref , CAS 10. T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira 和 S. Fujita, Applied Physics Express 1 [1], 011202 (2008)。 11)W.-Y. Kong,G.-A.吴,K.-Y.王,T.-F.张 Y.-F.邹博士王和 L.-B. Luo,Advanced Materials 28[48],10725 (2016)。 12) X. Chen、K. Liu、Z. Zhang、C. Wang、B. Li、H. Zhao、D. Zhao 和 D. Shen,ACS Appl.媽媽。接口 8[6], 4185 (2016)。应用物理快报 112[3], 032108 (2018) A. Kyrtsos, M. Matsubara 和 E. Bellotti。 14)Pearton SJ、Yang J、Cary IV、Ren F、Kim J、Tadjer MJ 和 Mastro MA,《应用物理评论》5[1],011301(2018)。 15) Y. Su, D. Guo, J. Ye, H. Zhao, Z. Wang, S. Wang, P. Li 和 W. Tang,《合金与化合物杂志》782, 299 (2019)。 16) Z. Cheng、F. Mu、T. You、W. Xu、J. Shi、ME Liao、Y. Wang、K. Huynh、T. Suga、MS Goorsky、X. Ou 和 S. Graham,ACS Appl.媽媽。接口 12[40], 44943 (2020)。 17)C.-H. Lin, N. Hatta, K. Konishi, S. Watanabe, A. Kuramata, K. Yagi 和 M. Higashiwaki, Applied Physics Letters 114 [3], 032103 (2019)。 https://doi.org/10.1103/PhysRevLett.116.141602 , Google Scholar Crossref 18. T. Matsumae、Y. Kurashima、H. Umezawa、K. Tanaka、T. Ito、H. Watanabe 和 H. Takagi。 19) P. Sittimart、S. Ohmagari、T. Matsumae、H. Umezawa 和 T. Yoshitake,AIP Advances 11 [10],105114 (2021)。 20) Y. Xu, F. Mu, Y. Wang, D. Chen, X. Ou 和 T. Suga, Ceramics International 45[5], 6552 (2019)。 21)W. Hao,Q. He,X. Zhou, X. Zhao, G. Xu 和 S. Long, 2022 IEEE 第 34 届国际功率半导体器件和集成电路研讨会 (ISPSD) (2022) 第 105 页。22) J. Zhang, P. Dong, K. Dang, Y. Zhang, Q. Yan, H. Xiang, J. Su, Z. Liu, M. Si, J. Gao, M. Kong, H. Zhou 和 Y. Hao, Nature Communications 13 [1], 3900 (2022)。
