[A3] 国际脑实验室、Kush Banga、Julius Benson、Jai Bhagat、Dan Biderman、Daniel Birman、Niccol`o Bonacchi、Sebastian A Bruijns、Robert A Campbell、Matteo Carandini、Ga ̈elle A Chapuis、Anne K Churchland、M Felicia Davatolhagh、Dong、Faulk、德国、德国、德国 Julia M Huntenburg、Cole Hurwitz、Anup Khanal、Christopher Krasniak、Guido T Meijer、Nathaniel J Miska、Zeinab Mohammadi、Jean-Paul Noel、Liam Paninski、Alejandro Pan- Vazquez、Noam Roth、Michael Schartner、Karolina Socha、Nicholas A Stein、Karl Marais、Marsa Welles、Anne Welles Steven J West、Matthew R Whiteway、Olivier Winter 和 Ilana B Witten。小鼠体内电生理测量的可重复性。修订正在审查中,bioRxiv,2023 年。
关于印度教库什·喜马拉雅山(HKH)地区的ICIMOD地区在亚洲延伸3500公里,跨越了八个国家 - 阿富汗,孟加拉国,不丹,中国,印度,缅甸,尼泊尔和巴基斯坦。涵盖了高海拔山脉,中间山脉和平原,该区域对于超过20亿人口的食物,水和能源安全至关重要,并且是无数不可替代的物种的栖息地。它也是敏锐的脆弱,也是对气候变化,污染和生物多样性损失三重行星危机的影响的前线。总部位于尼泊尔加德满都的国际综合山地发展中心(ICIMOD)是一家成立于1983年的国际组织,致力于使这个关键地区更加绿色,更具包容性和气候弹性。有关更多信息,请访问我们的网站。位置概述区域信息服务(RIS)是ICIMOD的区域合作与协作行动领域的建筑机构的新干预措施,这是该组织为实现可持续行动的区域和全球机制的工作的一部分。RIS的总体目标是利用数据的力量和快速发展的数字技术,以维持和保护跨越印度教库什喜马拉雅山地区的生命和生计的方式对决策产生影响。RIS增强了对气候和环境趋势和事件的数据,信息和见解的访问。它着重于开发高优先级的区域数据集,高级信息系统,应用程序和工具,以及创新的数字平台,以告知研究,政策,计划和投资决策。ris还将努力整合最佳的数字创新,例如AI,机器学习,云计算,以及部署网络方法,以向ICIMOD内外的用户提供快速,高质量的信息服务。这个职位 - 区域信息服务(RIS)干预的经理也将充当地理技术高级专家,因此是该领域的思想领袖,在ICIMOD及其合作伙伴之间做出了贡献。该职位负责监督和管理RIS,并确保其成功交付并与组织标准保持一致,并与组织中的其他人进行协调。该职位对RI的整体质量和及时执行负责,以确保其所有组件均已整合,跨ICIMOD的其他团队进行协调和工作,从事工具,模型开发和数据收集,并相互加强以实现所需的结果。这包括整个组织的风险管理,清晰的沟通和协作,以确保所有相关人员都了解他们的角色并有效地作为团队做出贡献。该角色还将监督和保留根据USAID/NASA服务计划工作的员工(一项使用卫星数据和地理空间技术来加强天气和气候弹性,农业和粮食安全的计划,
印度教库什喜马拉雅(HKH)地区以其高耸的山脉和主要的河流盆地而闻名,在全球范围内维持近14亿人口,对全球粮食生产至关重要。冰川融化了荷兰地区的融化,滋养农业,牲畜和园艺,支持山区社区的生计。然而,气候变化正在加速冰川的融化,潮湿季节的变化显着影响这些社区的粮食安全。领域,例如水资源,农业用地和人类健康,尤其是妇女健康,受这些变化的影响很大。几个世纪以来,农业一直是吉尔吉特 - 巴尔蒂斯坦经济的骨干,直接或间接地取决于吉尔吉特 - 巴尔蒂斯坦经济的经济,占70%以上的生计(Habib,2021)。妇女对农业做出同等或更多的贡献,充当与农业相关行动,水管理,生殖护理和社会服务的基本保管人。另外,随着男性从该地区寻求社会经济机会,妇女面临着灾难作为一线演员的影响,但没有接受过教育或接受任何培训来应对。因此,探索妇女对气候变化的看法和理解以及她们准备适应这些不可预测的变化至关重要。
・东盟生物多样性中心(2023)。东盟生物多样性前景3。从https://abo3.aseanbiodiverity.org/・Baloloy A.B.检索等。(2023)。绘制菲律宾的多年红树林变化:植被范围以及与人类和气候相关因素的影响。in:Leal Filho,W.,Kovaleva,M.,Alves,F.,Abubakar,I.R。(eds)气候变化策略:处理适应不断变化的气候的挑战。气候变化管理。Springer,Cham。 https://doi.org/10.1007/978-3-031-28728-2_12 chaudhary S.等。 (2023)。 不断变化的冰圈对生物多样性和生态系统服务的影响以及印度库什·喜马拉雅山的响应选择。 in icimod(P. Wester等人 [eds。 ]),印度教库什·喜马拉雅山的水,冰,社会和生态系统:前景(pp。) 123–163)。 icimod。 https://doi.org/10.53055/icimod.103 ・Corcino R.等。 (2023)。 菲律宾蓝色碳研究的状态,局限性和挑战:书目分析。 海洋科学区域研究 (2024)。 一个监测保护区和其他基于区域的保护措施的生物多样性的框架。 IUCN WCPA技术报告系列 7。https://doi.org/10.2305/hrap7908・Gonzalez A.等。 (2023)。 (2023)。 Kunming-Montreal全球生物多样性框架:它的作用和不做什么,以及如何改进它。Springer,Cham。https://doi.org/10.1007/978-3-031-28728-2_12 chaudhary S.等。 (2023)。 不断变化的冰圈对生物多样性和生态系统服务的影响以及印度库什·喜马拉雅山的响应选择。 in icimod(P. Wester等人 [eds。 ]),印度教库什·喜马拉雅山的水,冰,社会和生态系统:前景(pp。) 123–163)。 icimod。 https://doi.org/10.53055/icimod.103 ・Corcino R.等。 (2023)。 菲律宾蓝色碳研究的状态,局限性和挑战:书目分析。 海洋科学区域研究 (2024)。 一个监测保护区和其他基于区域的保护措施的生物多样性的框架。 IUCN WCPA技术报告系列 7。https://doi.org/10.2305/hrap7908・Gonzalez A.等。 (2023)。 (2023)。 Kunming-Montreal全球生物多样性框架:它的作用和不做什么,以及如何改进它。https://doi.org/10.1007/978-3-031-28728-2_12 chaudhary S.等。(2023)。不断变化的冰圈对生物多样性和生态系统服务的影响以及印度库什·喜马拉雅山的响应选择。in icimod(P. Wester等人[eds。]),印度教库什·喜马拉雅山的水,冰,社会和生态系统:前景(pp。123–163)。icimod。https://doi.org/10.53055/icimod.103 ・Corcino R.等。(2023)。菲律宾蓝色碳研究的状态,局限性和挑战:书目分析。海洋科学区域研究(2024)。一个监测保护区和其他基于区域的保护措施的生物多样性的框架。IUCN WCPA技术报告系列7。https://doi.org/10.2305/hrap7908・Gonzalez A.等。(2023)。(2023)。Kunming-Montreal全球生物多样性框架:它的作用和不做什么,以及如何改进它。全球生物多样性观察系统,以团结监测和指导行动,《自然生态与进化》第7期,第2173页。https://doi.org/10.1038/s41559-023-023-02263-x,环境科学领域,11。https://doi.org/10.3389/fenvs.2023.1281536 ・Hughes A.C.(2023)。帖子 - 2020年全球生物多样性框架:我们是如何到达这里的,下一个我们要去哪里?综合保护2(1)1-9。 https://doi.org/10.1002/inc3.16 ・ icimod(2023)。印度教库什·喜马拉雅山的水,冰,社会和生态系统:看法。(P. Wester,S。Chaudhary,N。Chettri,M。Jackson,A。Maharjan,S。Nepal&J.F。Steiner [eds。]。icimod。https://doi.org/1053055/icimod.1028 ・Kass J.等。 (2023)。 生物多样性建模的进步将改善对大自然对人的贡献的预测。 生态与进化的趋势。 https://doi.org/10.1016/j.tree.2023.10.011 ・Macintosh D.等。 (2023)。 生态系统的红色列表,西方珊瑚三角的红树林。 ecoevorxiv。 https://doi.org/10.32942/x21k5p ・Mori A.S.等。 (2023)。 可持续性挑战,机会和解决方案,用于长期生态系统观察。 皇家学会的哲学交易B:生物科学378:20220192。https://doi.org/10.1098/rstb.2022.0192 ・Muraoka H.等。 (2023)。 审查:关于生物多样性和陆地生态系统的长期和多学科研究网络 - 来自日本中部高山超级站点的发现和见解。 等。 (2024)。 (2023)。https://doi.org/1053055/icimod.1028 ・Kass J.等。(2023)。生物多样性建模的进步将改善对大自然对人的贡献的预测。生态与进化的趋势。https://doi.org/10.1016/j.tree.2023.10.011 ・Macintosh D.等。 (2023)。 生态系统的红色列表,西方珊瑚三角的红树林。 ecoevorxiv。 https://doi.org/10.32942/x21k5p ・Mori A.S.等。 (2023)。 可持续性挑战,机会和解决方案,用于长期生态系统观察。 皇家学会的哲学交易B:生物科学378:20220192。https://doi.org/10.1098/rstb.2022.0192 ・Muraoka H.等。 (2023)。 审查:关于生物多样性和陆地生态系统的长期和多学科研究网络 - 来自日本中部高山超级站点的发现和见解。 等。 (2024)。 (2023)。https://doi.org/10.1016/j.tree.2023.10.011 ・Macintosh D.等。(2023)。生态系统的红色列表,西方珊瑚三角的红树林。ecoevorxiv。https://doi.org/10.32942/x21k5p ・Mori A.S.等。(2023)。可持续性挑战,机会和解决方案,用于长期生态系统观察。皇家学会的哲学交易B:生物科学378:20220192。https://doi.org/10.1098/rstb.2022.0192 ・Muraoka H.等。(2023)。审查:关于生物多样性和陆地生态系统的长期和多学科研究网络 - 来自日本中部高山超级站点的发现和见解。等。(2024)。(2023)。生态与环境杂志(印刷中)・蓬普特A.J.靶向站点保护以提高新的全球生物多样性目标的有效性,一个地球,7(1):11-17。 https://doi.org/10.1016/j.oneear.2023.12.007。salmo,S。G.等。联合国在生态系统恢复的十年中的东南亚红树林。海洋科学领域。https://doi.org/10.3389/fmars.2023.1341796 ・Shin N.等。(2023)。在1807 - 1838年的Kakuson日记中,来自日本Kanazawa的采矿植物物候记录。国际生物气象学杂志。https://doi.org/10.1007/s00484-023-02576-3 shin N.等。 (2024)。 观点和评论:如何发展我们对东北亚社会和气候变化下人与景观之间关系的时间变化的理解? 正面。 环境。 SCI。 12:1236664。 https://doi.org/ 10.3389/fenvs.2024.1236664・ShinN。等。 (2024)。 在Flickr和YouTube上检索樱桃流动物候:日本GIFU塔鲁米铁路沿线的案例研究。 正面。 维持。 旅行。 3:1280685。 https://doi.org/10.3389/frsut.2024.12806 ・特殊问题Sino Bon:▶生物多样性科学特刊,2023年。 12。 在线。 https://www.biodiverity-science.net/cn/article/shownewarticle.do。 ▶生活世界特刊,2023年。 08。https://academic.hep.com.cn/lifeworld/cn/1673-0437/current.shtml。 ・ Trisurat Y.等。 (2023)。 (2023)。https://doi.org/10.1007/s00484-023-02576-3 shin N.等。(2024)。观点和评论:如何发展我们对东北亚社会和气候变化下人与景观之间关系的时间变化的理解?正面。环境。SCI。 12:1236664。 https://doi.org/ 10.3389/fenvs.2024.1236664・ShinN。等。 (2024)。 在Flickr和YouTube上检索樱桃流动物候:日本GIFU塔鲁米铁路沿线的案例研究。 正面。 维持。 旅行。 3:1280685。 https://doi.org/10.3389/frsut.2024.12806 ・特殊问题Sino Bon:▶生物多样性科学特刊,2023年。 12。 在线。 https://www.biodiverity-science.net/cn/article/shownewarticle.do。 ▶生活世界特刊,2023年。 08。https://academic.hep.com.cn/lifeworld/cn/1673-0437/current.shtml。 ・ Trisurat Y.等。 (2023)。 (2023)。SCI。12:1236664。 https://doi.org/ 10.3389/fenvs.2024.1236664・ShinN。等。(2024)。在Flickr和YouTube上检索樱桃流动物候:日本GIFU塔鲁米铁路沿线的案例研究。正面。维持。旅行。3:1280685。 https://doi.org/10.3389/frsut.2024.12806 ・特殊问题Sino Bon:▶生物多样性科学特刊,2023年。12。在线。https://www.biodiverity-science.net/cn/article/shownewarticle.do。 ▶生活世界特刊,2023年。 08。https://academic.hep.com.cn/lifeworld/cn/1673-0437/current.shtml。 ・ Trisurat Y.等。 (2023)。 (2023)。https://www.biodiverity-science.net/cn/article/shownewarticle.do。▶生活世界特刊,2023年。08。https://academic.hep.com.cn/lifeworld/cn/1673-0437/current.shtml。・ Trisurat Y.等。(2023)。(2023)。气候变化对泰国的物种组成和植物区域的影响。多样性15,1087。https://doi.org/10.3390/d15101087 wee A.等。在东南亚红树林恢复中进行环境DNA(EDNA)的前景和挑战。海洋科学领域。https://doi.org/10.3389/fmars.2023.1033258演示材料都可以通过Apbon网站访问:http://wwwww.esabii.biodic.go.go.go.jp/ap-bon/ap-bon/index.htex.htex.htex.html
本科生研究员(目前 17 名;共 35 名)Vedant Raval(2024–)、Emily Wang(2024–)、Richard Peng(2024–)、Christina Wang(2024–)、Matthew Salaway(2024–)、Ryan Wang(2024–)、Lorena Yan(2024–)、Qiutong Yi(2024–)、David Bai(2024–;CURVE 研究员)、Keyu He(2023–)、Zain Merchant(2023–;CURVE 研究员)、Nidhi Munikote(2023–;CURVE 研究员)、Miaosen Chai(2023–;CURVE 研究员)、Emmanuel Ezirim(2023–;VSI 研究员、CURVE 研究员)、Rohan Gupta(2023–;教务长研究员)、Abhinav Gupta(2023–;教务长研究员、URAP)、Leslie Moreno (2022–; CURVE 研究员)、曾子安 (2024; SURE 研究员)、Jaiv Doshi (2023)、钱玉玺 (2023)、Cicily Chung (2023; CURVE 研究员)、Riley Ashford (2023-24; SURE 研究员、CURVE 研究员)、Gwen Bradforth (2023-24; CURVE 研究员)、Riley Carlin (2023; → 哥伦比亚统计博士项目), Furong Jia (2022–23; CURVE Fellow; → 杜克大学计算机科学博士项目), Allen Chang (2022–23; → NSFGRFP; 宾夕法尼亚大学计算机科学博士项目), Aarav Monga (2022–23), Elle Szabo (2022–23), Chu Fang (2022–23; URAP), Julie Kim (2022–23; CURVE 研究员)、Junu Song(2022 年;CURVE 研究员)、Minh Ngoc Vu(2022 年;NSF Robotics REU)、Kush Bhagat(2022 年;SURE 研究员)、Chidera Iwudyke(2022 年;SURE 研究员)、Tanis Sarbatananda(2022 年;LACC ASSURE 研究员)
印度的气候变化事实表8温度升高印度的平均温度在1901年至2018年之间的平均温度升高0.7°C。到21世纪末,印度的平均温度预计将在没有重大行动的情况下升高4.4°C(相对于1976- 2005年的水平)。与1976 - 2005年的基线期相比,到本世纪末,夏季热浪的频率预计将增加3-4倍。降雨模式和季风夏季季风降雨(6月至9月)从1951年到2015年下降了6%,尤其是在印度 - 远程平原和西高止山脉上。极端降雨事件有所增加,每天降雨量超过150毫米,印度中部(1950- 2015年)上升了75%。季风可变性预计会增加,预计会有更强烈的湿法。干旱受干旱影响的地区在1951年至2016年之间每十年增加了1.3%。印度中部,西南海岸,南部半岛和印度东北部平均每十年经历两次以上的干旱。到21世纪末,印度可能会看到干旱频率和强度的增加。印度洋的变暖和海平面上升印度洋已加热1°C(1951- 2015年),高于全球平均水平0.7°C。北印度洋的海平面每年3.3毫米(1993–2017)上升,这是过去几十年的显着加速。到2100年,北印度洋的海平面预计将上升300mm。气候模型预测,由于海洋变暖,旋风强度将来会增加。热带气旋尽管北印度洋的热带气旋总数却有所下降,但非常严重的旋风风暴的频率增加了(每十年+1事件,2000- 2018年)。喜马拉雅地区印度库什喜马拉雅山脉在1951年至2014年之间的温暖1.3°C。到2100年,该地区的平均温度和降雪量降低。在许多地区都观察到冰川静修和降雪减少,除了在冬季降雪增加的卡拉科拉姆喜马拉雅山。
本出版物的出版得益于以下各方的重要建议和支持:Connecting Business 倡议(Karen Smith)、Direct Relief(Andrew Schroeder 博士)、Field Ready(Dara Dotz)、难民倡议基金(Sara-Christine Dallain)、谷歌(Ruha Devanesan、Alexander Diaz、Christopher Fearon、Sella Nevo)、IBM(Kush Varshney)、ID2020 联盟(Dakota Gruener、Ethan Veneklasen)、印度飞行实验室(Ruchi Saxena 博士)、红十字国际委员会(Veronique Christory、Ann Deer、Massimo Marelli、Vincent Graf Narbel、Stephanie Ridgway、Mark Silverman)、国际移民组织(Alexander Klosovsky 博士)、IrisGuard UK Ltd.(Eva Mowbray)、约翰霍普金斯大学应用物理实验室(Jason A. Lee)、KPHR, Inc.(Kyla Reid)、微软(Cameron Birge)、NetHope(Ray Short)、 Nexleaf Analytics、联合国人权事务高级专员办事处 (Scott Campbell)、海外发展研究所、人道主义政策小组 (Sorcha O'Callaghan、Barnaby Willitts-King)、Tableau 基金会 (Neal Myrick)、英国人道主义创新中心 (Mark Beagan、Ben Ramalingam、Lewis Sida)、联合国儿童基金会 (Kate Alley、Alissa Collins、Mari Denby、Ariana Fowler、Tautvydas Juskauskas、Christina Lomazzo、Toby Wicks)、联合国秘书长办公厅 (David Michael Kelly)、联合国基金会、联合国全球脉动、联合国难民事务高级专员办事处 (Katie Drew、Christopher Earney、Rebeca Moreno Jiménez、Sofia Kyriazi)、联合国信息和通信技术办公室 (Mark Dalton、Lambert Hogenhout)、联合国特别顾问办公室 (Yu Ping Chan、Anoush Tatevossian、Anni Tervo)、联合国世界粮食计划署(Marco Codastefano、Ria Sen、Emma Wadland)、牛津大学(Tsvetelina Van Benthem)、WeRobotics(Sonja Betschart、Patrick Meier)、世界银行(Nadia Piffaretti)、耶鲁大学(Nathaniel Raymond)、Shahrzad Yavari 以及我们在 OCHA 的同事,特别感谢 Andrew Alspach、Simon Bagshaw、Yasin本纳内、莉莲·巴拉哈斯、奥瑞利安·布弗勒、斯图尔特·坎波、胡安·查韦斯-冈萨雷斯、克里斯蒂安·克拉克、苏珊娜·康诺利、卡里姆·艾尔巴亚尔、马库斯·埃尔滕、大卫·格格布尔、阿里·戈克皮纳尔、文森特·胡宾、安娜·杰弗里斯、马琳·坎普·詹森、莱昂纳多·米兰诺、德克-简·奥姆茨格特、丹尼尔·普菲斯特、艾普丽尔·范、卡希夫·雷曼索菲·所罗门、莎拉·特尔福德、安德烈·维瑞蒂、 Nathalie Weizmann、Kathryn Yarlett、全球信息职能团队和战略传播部门。
本出版物的出版得益于以下各方的重要建议和支持:Connecting Business 倡议(Karen Smith)、Direct Relief(Andrew Schroeder 博士)、Field Ready(Dara Dotz)、难民倡议基金(Sara-Christine Dallain)、谷歌(Ruha Devanesan、Alexander Diaz、Christopher Fearon、Sella Nevo)、IBM(Kush Varshney)、ID2020 联盟(Dakota Gruener、Ethan Veneklasen)、印度飞行实验室(Ruchi Saxena 博士)、红十字国际委员会(Veronique Christory、Ann Deer、Massimo Marelli、Vincent Graf Narbel、Stephanie Ridgway、Mark Silverman)、国际移民组织(Alexander Klosovsky 博士)、IrisGuard UK Ltd.(Eva Mowbray)、约翰霍普金斯大学应用物理实验室(Jason A. Lee)、KPHR, Inc.(Kyla Reid)、微软(Cameron Birge)、NetHope (Ray Short)、Nexleaf Analytics、联合国人权事务高级专员办事处(Scott Campbell)、海外发展研究所、人道主义政策小组(Sorcha O’Callaghan、Barnaby Willitts-King)、Tableau 基金会(Neal Myrick)、英国人道主义创新中心(Mark Beagan、Ben Ramalingam、Lewis Sida)、联合国儿童基金会(Kate Alley、Alissa Collins、Mari Denby、Ariana Fowler、Tautvydas Juskauskas、Christina Lomazzo、Toby Wicks)、联合国秘书长办公厅(David Michael Kelly)、联合国基金会、联合国全球脉动、联合国难民事务高级专员办事处(Katie Drew、Christopher Earney、Rebeca Moreno Jiménez、Sofia Kyriazi)、联合国信息和通信技术办公室(Mark Dalton、Lambert Hogenhout)、联合国特别顾问办公室(Yu Ping Chan、Anoush Tatevossian、Anni Tervo)、联合国世界粮食计划署(Marco Codastefano、Ria Sen、Emma Wadland)、牛津大学(Tsvetelina Van Benthem)、WeRobotics(Sonja Betschart、Patrick Meier)、世界银行(Nadia Piffaretti)、耶鲁大学(Nathaniel Raymond)、Shahrzad Yavari 以及我们在 OCHA 的同事,特别感谢 Andrew Alspach、Simon巴格肖、亚辛·本纳、莉莲·巴拉哈斯、奥瑞利安·布弗勒、斯图尔特·坎波、胡安·查韦斯-冈萨雷斯、克里斯蒂安·克拉克、苏珊娜·康诺利、卡里姆·艾尔巴亚尔、马库斯·埃尔滕、大卫·格特格布尔、阿里·格克皮纳尔、文森特·胡宾、安娜·杰弗里斯、马琳·坎普·詹森、莱昂纳多·米兰诺、德克-简·奥姆齐特、丹尼尔·普菲斯特、艾普丽尔·范,卡西夫·雷赫曼、苏菲·所罗门、莎拉Telford、Andrej Verity、Nathalie Weizmann、Kathryn Yarlett、全球信息职能团队和战略传播部门。
Kush Vora Ninad Mehendale *计算机工程系电子系K.J Somaiya工程学院K.J.Somaiya工程学院孟买,印度孟买,印度kush.v@somaiya.edu ninad@somaiya.edu摘要 - 脑肿瘤是死亡的主要原因之一,因此,尽早诊断它们至关重要。 MRI是检测肿瘤的最有效诊断工具。 但是,热噪声,温度波动和其他伪影可能会产生嘈杂的MRI扫描,从而导致诊断不准确。 深度学习算法与图像处理技术结合使用,已在各种医学成像任务中有助于增强MRI图像。 我们的工作提出了一个带有两个编码器码头对的U-NET体系结构,用于降解MRI扫描,该扫描在通过注入合成高斯噪声生成的数据集上进行了细微的调整。 该模型将峰信号与噪声比(PSNR)从11.90提高到30.96。 提出的工作还提供了经验证据,表明拟议的deoising策略可将脑肿瘤的预测准确性提高近23%。 使用U-NET开发的去核技术将使放射科医生和计算机辅助诊断系统(CAD)在精确诊断疾病中通过产生清洁剂和更清晰的MRI扫描来使其受益。 关键字 - 图像增强,脱氧,U-NET,脑肿瘤,高斯噪声I. i ntroduction a脑肿瘤是一团异常的脑细胞。 封闭人脑的头骨非常坚硬,因此在这个紧密区域内的任何发展都会导致重大并发症。 随着这些肿瘤的生长,头骨内部的压力会增加,从而导致脑损伤。Somaiya工程学院孟买,印度孟买,印度kush.v@somaiya.edu ninad@somaiya.edu摘要 - 脑肿瘤是死亡的主要原因之一,因此,尽早诊断它们至关重要。MRI是检测肿瘤的最有效诊断工具。但是,热噪声,温度波动和其他伪影可能会产生嘈杂的MRI扫描,从而导致诊断不准确。深度学习算法与图像处理技术结合使用,已在各种医学成像任务中有助于增强MRI图像。我们的工作提出了一个带有两个编码器码头对的U-NET体系结构,用于降解MRI扫描,该扫描在通过注入合成高斯噪声生成的数据集上进行了细微的调整。该模型将峰信号与噪声比(PSNR)从11.90提高到30.96。提出的工作还提供了经验证据,表明拟议的deoising策略可将脑肿瘤的预测准确性提高近23%。使用U-NET开发的去核技术将使放射科医生和计算机辅助诊断系统(CAD)在精确诊断疾病中通过产生清洁剂和更清晰的MRI扫描来使其受益。关键字 - 图像增强,脱氧,U-NET,脑肿瘤,高斯噪声I. i ntroduction a脑肿瘤是一团异常的脑细胞。封闭人脑的头骨非常坚硬,因此在这个紧密区域内的任何发展都会导致重大并发症。随着这些肿瘤的生长,头骨内部的压力会增加,从而导致脑损伤。脑肿瘤分为两种不同类型。恶性(癌)和良性(非癌症)。这些肿瘤进一步分为原发性和继发性肿瘤(转移性肿瘤)。原发性脑肿瘤起源于大脑内部,但是当癌细胞从其他器官传播到大脑(肺部到大脑)时,转移性脑肿瘤就会发展。绝大多数原发性脑肿瘤都不癌。死亡率的第十个主要原因是脑肿瘤。在2020年,全球估计,有251,329人死于原发性恶性脑和中枢神经系统(CNS)肿瘤。今天在美国,估计有70万人受到原发性脑肿瘤的影响。这些肿瘤可能是致命的,并对生活质量产生重大影响。女性比男性更有可能获得任何类型的大脑或脊髓肿瘤,而男性则更有可能患上恶性肿瘤。这主要是因为某些类型的肿瘤在一种性别或另一种性别中更为普遍(例如,脑膜瘤在女性中更为常见)。患有恶性大脑或中枢神经系统肿瘤患者的5年生存率
Hannah P. Gideon, 1 , 2 , 23 Travis K. Hughes, 3 , 4 , 5 , 23 Constantine N. Tzouanas, 3 , 4 , 5 , 23 Marc H. Wadsworth II, 3 , 4 , 5 , 6 Ang Andy Tu, 7 Todd M. Gierahn, 7 Joshua M. Peters, 4 , 7 Forrest F. Hopkins, 4 , 8 Jun-Rong Wei, 4 , 8 Conner Kummerlowe, 9 Nicole L. Grant, 1 Kievershen Nargan, 10 Jia Yao Phuah, 1 H. Jacob Borish, 1 Pauline Maiello, 1 Alexander G. White, 1 Caylin G. Winchell, 1 , 2 , 11 Sarah K. Nyquist, 3 , 4 , 5 , 9 , 12 Sharie Keanne C. Ganchua, 1 Amy Myers, 1 Kush V. Patel, 1 Cassaundra L. Ameel, 1 Catherine T. Cochran, 1 Samira Ibrahim, 3 , 4 , 5 Jaime A. Tomko, 1 Lonnie James Frye, 1 Jacob M. Rosenberg, 4 , 8 , 13 Angela Shih, 13 Michael Chao, 4 , 8 Edwin Klein, 14 Charles A. Scanga, 1 , 2 Jose Ordovas-Montanes, 4 , 5 Bonnie伯格(Berger),约书亚·T·马蒂拉(Joshua T. Shalek 3,4,5,6,6,18,24,25, * 1微生物学和分子遗传学系,匹兹堡大学医学院,宾夕法尼亚州匹兹堡,宾夕法尼亚州匹兹堡研究中心,匹兹堡,宾夕法尼亚州匹兹堡大学,美国宾夕法尼亚州匹兹堡大学,美国3号宾夕法尼亚州匹兹堡大学3.哈佛大学,马萨诸塞州剑桥,美国5麻省理工学院和哈佛大学,马萨诸塞州剑桥市6美国6化学系,马萨诸塞州理工学院,马萨诸塞州剑桥市,美国7 7生物工程系),sfortune@hsph.harvard.edu(S.M.F.美国马萨诸塞州波士顿,马萨诸塞州波士顿公共卫生学院9计算与系统生物学计划,马萨诸塞州技术研究所,美国马萨诸塞州剑桥市,美国10号非洲卫生研究所,南非德班,南非,肺部,过敏和重症监护医学司,匹兹堡大学,匹兹堡大学,匹兹堡,帕特斯堡,帕特斯堡,帕特斯堡,帕特斯堡,帕特斯堡,美国12级计算机。美国马萨诸塞州剑桥市技术,13美国马萨诸塞州马萨诸塞州马萨诸塞州综合医院,美国马萨诸塞州波士顿,美国14号实验室动物研究部,匹兹堡大学,匹兹堡宾夕法尼亚州匹兹堡大学15美国匹兹堡,匹兹堡大学匹兹堡大学的传染病学系,美国15南非德班,纳塔尔17化学工程系,马萨诸塞州剑桥,马萨诸塞州剑桥市,美国马萨诸塞州剑桥研究所18宾夕法尼亚州剑桥市的马萨诸塞州综合癌症研究所,马萨诸塞州科技研究所19 of KwaZulu-Natal, Durban, South Africa 21 Department of Infection and Immunity, University College London, London, UK 22 Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA 23 These authors contributed equally 24 These authors contributed equally 25 Lead contact *Correspondence: joanne@pitt.edu (J.L.F.),shalek@mit.edu(A.K.S。)https://doi.org/10.1016/j.immuni.2022.04.004