可再生能源在能源系统中的份额不断增加,需要储能技术来处理间歇性能源和变化的能源消耗。液态空气储能 (LAES) 是一种很有前途的技术,因为它具有高能量密度并且不受地理限制。通过在 LAES 中使用热能和冷能回收循环可以获得相对较高的往返效率 (RTE)。在本文中,针对独立 LAES 系统优化并比较了与不同冷能回收循环相关的七种案例。首次考虑使用多组分流体循环 (MCFC) 和有机朗肯循环 (ORC) 作为 LAES 中的冷回收循环。最优结果表明,具有双 MCFC 的 LAES 系统性能最佳,RTE 为 62.4%。通过将高温热交换器的最小温差从 10 C 降低到 5 C,可将此 RTE 进一步提高到 64.7%。优化结果还表明,冷能回收系统中使用的 ORC 不产生任何功,只发生工作流体的相变,因此不应使用它们。最后,应用能量传递效率来测量充电和放电过程的热力学性能。© 2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
摘要:可再生能源的日益普及使得电能存储系统在平衡和提高电网效率方面发挥着关键作用。液态空气储能 (LAES) 是一种有前途的技术,主要用于大规模应用,它使用制冷剂(液态空气)作为能量载体。与其他类似的大规模技术(如压缩空气储能或抽水蓄能)相比,使用液态空气作为存储介质可以达到高能量密度并克服与地质限制相关的问题。此外,当与高品位废冷/废热资源(如液化天然气再石化工艺和排放到大气中的热燃烧气体)相结合时,LAES 能够显著提高往返效率。尽管关于 LAES 主题的文献中的第一篇文献出现在 1974 年,但这项技术直到最近几年才引起世界各地众多研究人员的关注,导致科学产出迅速增加,并在英国实现了两个系统原型。本研究旨在通过文献计量分析报告科学进展的现状,确定 LAES 技术的热点和研究趋势。研究结果可供参与这项新兴技术的研究人员和制造商使用,以了解最新技术、科学产出的趋势、全球机构的当前网络以及通过 LAES 连接的作者。我们的结论为未来的研究提供了有用的建议,强调了研究趋势和当前的差距。
能源供应是一个国家发展和经济增长的重要因素。如今,我们的能源系统仍然由产生温室气体的化石燃料主导。因此,有必要切换到可再生能源形式并增加废物到能源系统的努力。然而,一旦在工业系统中引入了可再生能源,最重要的考虑因素是由于可再生能源的间歇性,能源供应的稳定性和可持续性。基于先前的考虑,本章讨论了电能的存储技术,以补偿此问题。引入了一些成熟的技术,例如泵送水力储能(PHE),压缩空气储能(CAES),氢电解和燃料电池(FC)和电池。但是,由于某些局限性,例如地理限制,高资本成本和低系统效率,因此并未广泛应用它们。液体空气储能(LAES)有可能克服以前技术的缺点,并且可以与现有的组件和电力系统充分集成。在本章中,分析了LAE的原理,并比较了具有不同液化过程的四种LAE技术。使用了四个评估参数:往返效率,特定的能耗,液体产量和弹性效率。结果表明,具有冷热能源存储的LAE在其他过程中具有相当大的优势。最后,讨论了具有更高系统效率和性能的混合系统的未来前景,其中LAE与可再生能源,废料和电池进行了整合。
本文讨论了储能问题。这一重要问题与可再生能源的持续转型有关。液态空气储能 (LAES) 是一种适用于大规模储能的机械储能技术。本文介绍了一种通过将 LAES 与跨临界二氧化碳循环相结合来提高其效率的方法。为此,本文对两个 Kapitza LAES 系统与跨临界 CO 2 循环进行了数值分析:并联和后续模式。在这两种情况下,最大化 CO 2 压力都有助于提高整体效率。将余热引导至 CO 2 循环才是有利可图的。相反,在膨胀前降低空气温度以期为 CO 2 循环提供更多热量实际上会产生更糟糕的结果。并联系统实施可以将存储效率提高 5-6%,具体取决于其他因素。相比之下,后续系统只能将存储效率提高约 3.5%-5%。
在工业规模上的储存项目已由中国公司中国公司中国公司选择了为低温设备供应,作为最大的可再生能源存储项目的一部分。全球工业规模的第1个项目由中国西北部的古尔穆德(Golmud)地区安装在中国西北部的古尔穆德(Golmud)地区,并计划在2024年底委托。这是使用Laes技术(液体空气储能)在工业规模上进行世界上第一个项目。该设备将存储60MW的太阳能,该能源将被重新分配到电网中,以驱动该地区行业和房屋的需求。该飞行员旨在与中国股票存储技术公司在全球范围内开发,该公司将成为大规模长期储能市场的领导者,尤其是由于Fives的支持。fives彻底改变了替代能量的替代能量的使用是由风,太阳能或液压等替代电流产生的。主要优点是它们100%脱碳,但对制造商的不便是:一旦生产,它们几乎需要立即使用。Laes Technology是目前用于存储替代能量的锂离子电池的有效且可持续的选择。是Laes技术的核心,由五杆提供的6架热交换器将液体储存产生的太阳能所需的空气,因此可以在给定时间释放。这些热交换器是在法国东部的Golbey的Fives的研讨会上生产的。“这个雄心勃勃的项目是五个五个能力支持行业变化和脱碳能源的出现的证据。五年以上的低温技术领导者五年设计的关键设备以优化客户的性能并减少CO 2。“储能市场为新应用提供了巨大的机会,而Laes技术似乎是更可持续的世界的最有效解决方案。我们很乐意与五个突破项目合作,这将使Laes领域最大的示范项目建立,也是全球规模上最大的储能项目。”宣布智凯储能技术有限公司的首席科学家Wei Ji博士
液态空气储能 (LAES) 是一种有前途的净零转换储能技术。对于使用 LAES 的微电网,市场电价会在系统内产生很大的不确定性。为了解决这个问题,信息缺口决策理论 (IGDT) 方法已被证明是一种解决系统运行不确定性的有效工具。IGDT 方法是一种旨在解决不确定性的决策工具,它可以在信息稀缺的情况下显著提高决策能力。此外,状态转换算法 (STA) 是一种利用结构学习的高度智能优化算法。本研究提出了一种新颖的 IGDT-STA 混合方法,用于解决具有 LAES 的微电网的最优运行,同时考虑市场电价的不确定性。IGDT-STA 为规避风险或承担风险的决策者提供了两种不同的策略。这些策略随后由 STA 方法优化。此外,IGDT-STA 在多代理框架内实施,以增强系统灵活性。通过案例研究发现,IGDT-STA与IGDT-遗传算法、随机方法和蒙特卡洛方法相比具有良好的性能。
类型 技术 缩写 TRL 混凝土热能存储 CTES 4 电热能存储 ETES 3 重力能存储 GES 6 液态空气能存储 LAES 6 锂离子电池存储 Li-Ion 9
一个设备的操作和使用是为了实现每个服务的特定目标,与系统测试有关。该设备及专业经验可用于解决所有军事服务的特定问题,也可用于许多工业组织。 \ticýi mnp ro~ermenI'is ore/co stoa't 正在完成,其中 \t 是错误的,并且不反映在此
ESS可以帮助解决英国的网格灵活性问题,这是由于依赖天然气的峰值能力而引起的。但是,泵送的水电储存(PHS)和电池能量存储系统(BESS)预计将来将发挥更重要的作用。贝斯部署尤其有望大大增加,贝丝将在2050年之前统治储能景观。长期存储需求,每周,每月甚至季节性持续时间,预计将通过绿色氢和PHS的结合来满足。基于锂的电池预计将是规模经济和电动汽车增长(EV)驱动的固定能量存储的主要技术。尽管PHS和压缩空气储能(CAES)具有较长的交货时间和地理限制之类的局限性,但CAES为降低成本提供了机会,液体空气储能(LAES)提供了更广泛的部署可能性。