晚期内体/溶酶体(LELS)对于许多生理过程至关重要,它们的功能障碍与许多疾病有关。蛋白质组学分析已经鉴定出数百种LEL蛋白,但是,这些蛋白是否均匀地存在于每个LEL上,或者是否存在具有独特蛋白质组成的细胞类型依赖性LEL亚群,尚不清楚。我们采用了定量的多重DNA-油漆超分辨率方法来检查单个LELS上六种关键LEL蛋白(Lamp1,Lamp2,CD63,TMEM192,NPC1和LAMTOR4)的分布。虽然LAMP1和LAMP2在LEL中含量丰富,但标志着公共种群,大多数分析的蛋白质与特定的LEL亚群有关。我们的多重成像方法基于其独特的膜蛋白组成,最多鉴定出多达八个不同的LEL亚群。此外,我们对这些亚群和线粒体之间的空间关系的分析表明,NPC1阳性LELS的细胞类型特异性趋势与线粒体紧密地位。我们的方法将广泛适用于在许多生物学环境中用单细胞器分辨率来确定细胞器异质性。
分子伴侣介导的自噬 (CMA) 是溶酶体蛋白水解的主要途径,被认为是控制多种细胞功能的关键因素,其缺陷与多种人类疾病有关。迄今为止,由于非四足动物缺乏可识别的溶酶体相关膜蛋白 2A (LAMP2A),而 LAMP2A 是 CMA 的限制和必需蛋白,因此推测这种细胞功能仅限于哺乳动物和鸟类。然而,最近在几种鱼类中发现的表达序列与哺乳动物 LAMP2A 具有高度同源性,这挑战了这种观点,并表明 CMA 在进化过程中出现的时间可能比最初认为的要早。在本研究中,我们全面描述了脊椎动物中 LAMP2 基因的进化史,并证明 LAMP2 确实出现在脊椎动物谱系的根源中。利用青鳉 (Oryzias latipes) 的成纤维细胞系,我们进一步表明,剪接变体 lamp2a 在长期饥饿状态下控制着一种荧光报告基因在溶酶体中的积累,这种荧光报告基因通常用于追踪哺乳动物细胞中的 CMA。最后,为了阐明 Lamp2a 在鱼类中的生理作用,我们生成了该特定剪接变体的敲除青鳉,并发现这些缺陷鱼的碳水化合物和脂肪代谢发生了严重改变,这与肝脏中缺乏 CMA 的小鼠的现有数据一致。总之,我们的数据为鱼类中存在 CMA 样通路提供了第一个证据,并为使用互补遗传模型(如斑马鱼或青鳉)从进化角度研究 CMA 带来了新视角。
Congenital myopathy / Congenital muscular dystrophy (COL6A1, COL6A2, COL6A3, COL12A1, FKRP, FKTN, LAMA2, LARGE1, POMGNT1, POMGNT2 (GTDC2), POMT1, POMT2, COL4A1, COL4A2, DAG1, DPM1, DPM2, DPM3, dolk, ISPD, GMPPB, b3galnt2, chkb, plec, sil1, b4gat1 (b3gnt1), pomk (sgk196), itga7, Them5, Micu1, act1, cfl2, dnm2, tbd1, mbt1, mbt1, mbt1, myh8,neb,ryr1,sepn1,tnni2,tnnt1,tnnt3,tpm2,tpm3,stim1,ecel1,cdc78,kbtbd10(kbtbd10),klhl40(kbtbd5)(kbtbd5),mybdbd),mybdbd),mybd) ),mybd),mybd),mybd) Lamp2, VMA21, STAC3, lmod3, MEGF10, epg5, ttn, adamts15, cacna1s, CNTN1, Doc7, Golga2, Hacd1 (PLPLA), inpp5k, klhl9, msto1, Mtm18, mybpp, mybpp, mybpp, mybpp, mybpp srpk3,them38a,trappc11)
摘要:心力衰竭(HF)是一种进行性慢性病,仍然是全球死亡的主要原因,影响了6400万以上的患者。HF可能是由具有单基因病因的心肌病和先天性心脏缺陷引起的。与心脏缺陷发展相关的基因和单基因疾病的数量正在不断增长,并包括遗传的代谢杂志(IMD)。已经报道了几种影响各种代谢途径的IMD,出于心肌病和心脏缺陷。考虑到糖代谢在心脏组织中的关键作用,包括能量产生,核酸合成和糖基化,与心脏表现相关的越来越多的与碳水化合物代谢相关的IMD越来越多。在这项系统的综述中,我们提供了与碳水化合物代谢相关的IMD的全面概述,这些IMD呈现出心肌病,心律失常疾病和/或结构性心脏缺陷。我们识别出患有心脏并发症的58 IMD:3糖/糖连接转运蛋白的缺陷(GLUT3,GLUT10,THTR1); 2个磷酸盐途径的疾病(G6PDH,TALDO); 9糖原代谢疾病(GAA,GBE1,GDE,GYG1,GYS1,LAMP2,RBCK1,PRKAG2,G6PT1); 29 congenital disorders of glycosylation (ALG3, ALG6, ALG9, ALG12, ATP6V1A, ATP6V1E1, B3GALTL, B3GAT3, COG1, COG7, DOLK, DPM3, FKRP, FKTN, GMPPB, MPDU1, NPL, PGM1, PIGA, PIGL, PIGN, PIGO,PIGT,PIGV,PMM2,POMT1,POMT2,SRD5A3,XYLT2); 15碳水化合物连接的溶酶体储存疾病(CTSA,GBA1,GLA,GLB1,HEXB,IDUA,IDS,IDS,SGSH,NAGLU,HGSNAT,GNS,GNS,GALNS,GALNS,GALNS,ARSB,ARSB,GUSB,GUSB,ARSK)。通过这项系统评价,我们旨在提高人们对碳水化合物连接IMD的心脏介绍的认识,并引起人们对碳水化合物连接的致病机制的注意,这些致病机制可能是心脏并发症的基础。
简介心肌病 (CM) 是一组异质性心肌疾病,可分为肥厚性 CM (HCM)、扩张性 CM (DCM) 和限制性 CM (RCM) (1–4)。已鉴定出 CM 的遗传因素,且有 100 多个基因与不同类型的 CM 相关 (5, 6)。已建立动物模型并用于发现关键信号通路和治疗策略。已鉴定出至少 7 条具有治疗潜力的 CM 信号通路,包括丝裂原活化蛋白激酶 (MAPK) 信号转导、mTOR 信号转导、β -肾上腺素能受体信号转导、磷酸二酯酶 5 (PDE5) 信号转导、组蛋白去乙酰化酶 (HDAC) 信号转导、Ca 2+ /钙调蛋白依赖性激酶 II 信号转导和钙调磷酸酶-活化 T 细胞核因子 (Cn-NFAT) 信号通路 (7–9)。例如,mTOR 是一种丝氨酸/苏氨酸蛋白激酶,在调节心肌细胞蛋白质稳态方面起着关键作用 (10–12);通过药理学或遗传学方法部分抑制 mTOR 可对几种类型的心肌病产生心脏保护作用,包括 lamp2 相关 HCM (13)、bag3 相关和层蛋白 A/C 相关 DCM (14, 15) 以及贫血和阿霉素诱发的心肌病 (DIC) (16)。相反,已发现 MAPK 几乎在每种应激和激动剂诱发的肥大刺激下都会激活,并以独特的方式调节心脏离心和向心生长之间的平衡 (17, 18)。 MAPK 的激活会导致离心性肥大并促进肌细胞延长,而抑制细胞外信号调节激酶 (ERK) 通路会减弱对压力超负荷的肥大反应 (19)。MYH7,也称为 β - 肌球蛋白重链,是第一个被确定的 CM 致病基因,后来被确定为约 18% 的 HCM 病例的病因 (20–22)。在人类中,MYH7 与 MYH6 串联位于 14 号染色体上,MYH7 是位于 MYH6 上游的主要成体亚型。在小鼠中,Myh7 和 Myh6 也串联位于 14 号染色体上;然而,上游的 Myh7 基因
引言Ca 2+对于心脏电导传导和收缩至关重要(1,2)。虽然激发反应耦合触发了Ca 2+从肌浆网(SR)释放到通过Ryanodine receptors(Ryrs)到细胞质的,但SR Ca 2+将Ca 2+摄入Ca 2+在很大程度上由SR Ca 2+ -Atpase 2A(Serca 2a(Serca2a)(2,2,2,2,3)。在SR中,Ca 2+由最丰富的Ca 2+结合蛋白(Calsequestrin 2(Casq2)(4)保留。casq1与CASQ2高度同源,这两种蛋白质的作用类似于调节肌肉细胞中Ca 2+的稳态(5)。尽管CASQ1和CASQ2都存在于骨骼肌中,但仅在心肌细胞中发现CASQ2。小鼠遗传学研究表明,尽管SR Ca 2+稳态调节受到破坏,但CASQ1或CASQ2的丧失未能引起致命性心肌病(5)。相反,心肌细胞中具有CASQ2过表达的转基因小鼠患有严重的心肌病,并在16周的时间内过早死亡(6,7)。液泡心肌病是一种罕见但致命的心脏病,具有肌纤维中突出液泡的特征。它通常与溶酶体功能性缺陷有关,包括储存障碍(即富含酸α-葡萄糖苷酶缺乏症)和蛋白质缺乏症(即,Danon疾病,由LAMP2缺乏症引起)(8-10)。然而,经常观察到非散糖体相关的液泡心脏病,其发病机理需要研究(11,12)。染色质复制复合物调节大量基因表达(13)。以前,有报道称SWI/SNF染色质复合物调节心脏发育和产后心脏的生长(14)。例如,SWI/SNF染色质重塑剂的核心成分BRG1促进胚胎心肌细胞增殖并保留心脏分化(15)。在成年小鼠中,心脏应激激活的BRG1诱导病理α -MHC到β -MHC转移,导致肥大(15)。除了SWI/SNF染色质复合物复合物外,哺乳动物还存在其他3种其他染色质重塑剂(ISWI,NURD和INO80/SWR复合物)(13)。但是,与SWI/SNF复合物相比,这3种染色质复合物在产后心脏中的功能仍然未知。含锌手指命中域 - 含有含蛋白的蛋白1(Znhit1;补充表1;本文在线提供的补充材料; https://doi.org/10.1172/jci.insight.1487752ds1),是一个键
研讨会准备的出版物:Liang Y,Luo X,Schefczyk S,Muungani LT,Deng H,Wang B,Baba HA,Lu M,Lu M,Wedemeyer H,Schmidt HH,Broing r。乙型肝炎表面抗原表达会通过减少LAMP2而损害内质网应激相关的自噬通量。JHEPREP。2024JAN 28; 6(4):101012。 Schefczyk S,Luo X,Liang Y,Hasenberg M,Walkenfort B,Trippler M,Schuhenn J,Sutter K,Lu M,Wedemeyer H,Schmidt HH,Broing r。 TG1.4HBV-S-REC小鼠是一种杂交丙型肝炎病毒 - 转基因模型,发展为轻度的肝炎。 SCIREP。202312月20日; 13(1):22829。 luo X,Zhang R,Schefczyk S,Liang Y,Lin SS,Liu S,Baba HA,Lange CM,Wedemeyer H,Lu M,Bro.R. YAP的核转运驱动BMI相关的肝炎病毒BMI相关肝癌发生。 肝脏Int。 2023年9月; 43(9):2002-2016。 Luo X,Zhang R,Lu M,Liu S,Baba HA,Gerken G,Wedemeyer H,Broing R。 河马途径反调节丙型肝炎病毒感染中的先天免疫力。 前疫苗。 2021 5月25日; 12:684424。 Zhang Z,Trippler M,Real CI,Werner M,Luo X,Schefczyk S,Kemper T,Anastasiou OE,Ladiges Y,Treckmann J,Paul A,Baba HA,Allweiss L,Allweiss L,Dandri M,Dandri M,Dandri M,Gerken G,Gerken G,Gerken G,Gerken G,Wedemeyer H,Schlaak Jf,Schlaak Jf,laus jf,broim broive broim thiviv thiviv tiviv tiviv。受体2原发性肝细胞感染后的信号传导。 Hepatology 2020年9月; 72(3):829-844。 Broing R,Zhang X,Kottilil S,Trippler M,Jiang M,Lu M,Gerken G,Schlaak JF。 干扰素刺激的基因15是丙型肝炎病毒的前病毒因子,也是IFN反应的调节剂。 肠道。JHEPREP。2024JAN 28; 6(4):101012。Schefczyk S,Luo X,Liang Y,Hasenberg M,Walkenfort B,Trippler M,Schuhenn J,Sutter K,Lu M,Wedemeyer H,Schmidt HH,Broing r。TG1.4HBV-S-REC小鼠是一种杂交丙型肝炎病毒 - 转基因模型,发展为轻度的肝炎。SCIREP。202312月20日; 13(1):22829。 luo X,Zhang R,Schefczyk S,Liang Y,Lin SS,Liu S,Baba HA,Lange CM,Wedemeyer H,Lu M,Bro.R. YAP的核转运驱动BMI相关的肝炎病毒BMI相关肝癌发生。 肝脏Int。 2023年9月; 43(9):2002-2016。 Luo X,Zhang R,Lu M,Liu S,Baba HA,Gerken G,Wedemeyer H,Broing R。 河马途径反调节丙型肝炎病毒感染中的先天免疫力。 前疫苗。 2021 5月25日; 12:684424。 Zhang Z,Trippler M,Real CI,Werner M,Luo X,Schefczyk S,Kemper T,Anastasiou OE,Ladiges Y,Treckmann J,Paul A,Baba HA,Allweiss L,Allweiss L,Dandri M,Dandri M,Dandri M,Gerken G,Gerken G,Gerken G,Gerken G,Wedemeyer H,Schlaak Jf,Schlaak Jf,laus jf,broim broive broim thiviv thiviv tiviv tiviv。受体2原发性肝细胞感染后的信号传导。 Hepatology 2020年9月; 72(3):829-844。 Broing R,Zhang X,Kottilil S,Trippler M,Jiang M,Lu M,Gerken G,Schlaak JF。 干扰素刺激的基因15是丙型肝炎病毒的前病毒因子,也是IFN反应的调节剂。 肠道。SCIREP。202312月20日; 13(1):22829。luo X,Zhang R,Schefczyk S,Liang Y,Lin SS,Liu S,Baba HA,Lange CM,Wedemeyer H,Lu M,Bro.R. YAP的核转运驱动BMI相关的肝炎病毒BMI相关肝癌发生。肝脏Int。 2023年9月; 43(9):2002-2016。 Luo X,Zhang R,Lu M,Liu S,Baba HA,Gerken G,Wedemeyer H,Broing R。 河马途径反调节丙型肝炎病毒感染中的先天免疫力。 前疫苗。 2021 5月25日; 12:684424。 Zhang Z,Trippler M,Real CI,Werner M,Luo X,Schefczyk S,Kemper T,Anastasiou OE,Ladiges Y,Treckmann J,Paul A,Baba HA,Allweiss L,Allweiss L,Dandri M,Dandri M,Dandri M,Gerken G,Gerken G,Gerken G,Gerken G,Wedemeyer H,Schlaak Jf,Schlaak Jf,laus jf,broim broive broim thiviv thiviv tiviv tiviv。受体2原发性肝细胞感染后的信号传导。 Hepatology 2020年9月; 72(3):829-844。 Broing R,Zhang X,Kottilil S,Trippler M,Jiang M,Lu M,Gerken G,Schlaak JF。 干扰素刺激的基因15是丙型肝炎病毒的前病毒因子,也是IFN反应的调节剂。 肠道。肝脏Int。2023年9月; 43(9):2002-2016。Luo X,Zhang R,Lu M,Liu S,Baba HA,Gerken G,Wedemeyer H,Broing R。河马途径反调节丙型肝炎病毒感染中的先天免疫力。前疫苗。2021 5月25日; 12:684424。Zhang Z,Trippler M,Real CI,Werner M,Luo X,Schefczyk S,Kemper T,Anastasiou OE,Ladiges Y,Treckmann J,Paul A,Baba HA,Allweiss L,Allweiss L,Dandri M,Dandri M,Dandri M,Gerken G,Gerken G,Gerken G,Gerken G,Wedemeyer H,Schlaak Jf,Schlaak Jf,laus jf,broim broive broim thiviv thiviv tiviv tiviv。受体2原发性肝细胞感染后的信号传导。Hepatology 2020年9月; 72(3):829-844。Broing R,Zhang X,Kottilil S,Trippler M,Jiang M,Lu M,Gerken G,Schlaak JF。干扰素刺激的基因15是丙型肝炎病毒的前病毒因子,也是IFN反应的调节剂。肠道。2010年8月; 59(8):1111-9。
