我们所有使用高功率激光器的人都经历过激光损伤,通常是在我们最不想发生的时候。有时,仅仅是一道意外的闪光就意味着需要更换光学元件,但情况往往更糟,因为单个涂层损坏就会导致整个系统故障。我们的大部分工作是认证脉冲激光系统的光学元件,以防止这种灾难性事件的发生。近年来,我们收到越来越多的 CW 测试请求。这些光学元件主要用于制造业和医疗行业,而这些行业的损坏成本同样高昂。随着输出功率的增加,损坏越来越普遍,认证 CW 光学元件也变得更加必要。它们似乎在低于脉冲系统中的性能和阈值预期的功率水平下损坏。我们在此报告了一项关于不同基底材料在脉冲和 CW 性能方面的研究,这些研究由它们的激光诱导损伤阈值 (LIDT) 值给出。LIDT 值表示光学元件在不损坏的情况下可以承受的最大功率密度(或在 CW 的情况下,最大线性功率密度)。
关键词:地形激光雷达、无人机、精度、变化检测、基于对象的分析、地貌学 摘要:本文评估了无人机 (UAV) 激光扫描在监测阿尔卑斯山草地浅层侵蚀方面的潜力。在多洛米蒂山脉(意大利南蒂罗尔)亚高山/高山海拔区的试验场,无人机激光扫描 (ULS) 获取了 3D 点云。为了评估其精度,将该点云与 (i) 差分全球导航卫星系统 (GNSS) 参考测量和 (ii) 地面激光扫描 (TLS) 点云进行了比较。 ULS 点云和机载激光扫描 (ALS) 点云被栅格化为数字表面模型 (DSM),作为侵蚀量化的概念验证,我们计算了 2018 年的 ULS DSM 和 2010 年的 ALS DSM 之间的高程差异。对于连续的高程变化空间对象,计算体积差异,并为每个变化对象分配一个土地覆盖类别(裸地、草地、树木),该类别源自 ULS 反射率和 RGB 颜色。在此测试中,ALS 点云的准确性和密度主要限制了对地貌变化的检测。尽管如此,结果的合理性已通过现场地貌解释和记录得到证实。估计测试地点(48 公顷)的总侵蚀量为 672 立方米。这种侵蚀体积估计值
在各个组件的TMC管部分中有一定程度的通用性。,如果当前的单片端配件分为两个部分,则可以增加制造灵活性和降低成本的可能性,以及在稍后阶段焊接的特定端功能,如图4所示。但是,要实现这一机会的全部潜力,必须将焊缝尽可能靠近标准化端拟合的大小来最小化,以避免对TMC的热损坏。激光焊接是一种有吸引力的解决方案,因为它提供了使最小热输入所需的相对深焊接的可能性,并且作为Oliver活动的一部分开发和优化了该过程。
摘要 激光扫描是获取地形及其上物体的高精度最新空间数据的方法之一。激光雷达 (LIDAR) 是最现代、发展最快的技术之一,它揭示了迄今为止传统方式无法实现的测量新功能。本文旨在展示使用机载激光扫描数据进行能源网络测量和可视化的可能性,以及使用 TerraSolid 软件包识别现有网络对周围环境构成的危险。根据从机载激光扫描中获得的两种不同点云,对电力线的两个独立部分进行了测量。第一个点云的密度为 16 点/平方米,另一个点云的密度为 22 点/平方米。该项目是在 MicroStation V8i 软件环境中创建的,使用特殊叠加层——芬兰 TerraSolid 公司的 TerraScan 和 TerraModeler。使用不同密度的测试云旨在指示点云的最佳密度,从而允许基于机载激光扫描数据对能源网络进行调查和可视化。该出版物通过特定示例介绍了电力线矢量化和可视化的过程以及在危险距离内检测物体的过程。还证实了使用满足行业要求的应用激光雷达数据进行电力线调查的可能性。
摘要 在航空航天工程中,计算流体动力学 (CFD) 领域研究飞机的空气动力学行为。目前用于执行 CFD 模拟的是飞机的计算机辅助设计 (CAD) 模型,这些模型通常是低细节的工业设计模型。研究改进模拟过程结果的新方法非常重要。可以在此方向上测试的一种方法是创建用于 CFD 的实际飞机的更详细模型。这种模型可以通过逆向工程技术构建。在众多可用方法中,激光扫描最适合这样的项目。这是因为激光扫描具有在短时间内以高精度获取大量物体点的优势。代尔夫特理工大学拥有开展此类项目的必要资源。对代尔夫特理工大学航空航天工程学院的一架用于教学和科学目的的 Cessna Citation II 进行了测量。还提供这架飞机的 CAD 设计模型。此外,代尔夫特理工大学的光学和激光遥感系还提供了一台 Z+F Imager 5003 激光扫描仪。这是一款相位扫描仪,每秒可以轻松捕获 120,000 个 X、Y 和 Z 坐标点。测量在一天之内在 Schiphol East 的机库中进行,Cessna 就位于那里。所选的测量设置使用了 12 个扫描位置,这些位置“su
扫描技术,尤其是移动扫描技术的快速发展,使得从海上测量平台和自主载人或无人驾驶车辆收集空间数据成为可能。提出的解决方案源自移动扫描。然而,我们应该记住,海上激光扫描的特殊性和收集到的数据的处理应该采用地理信息系统可接受的形式,特别是典型的海上需求。同时,我们应该意识到,来自海上移动扫描的数据构成了描述海洋环境的新方法,并带来了与空中和陆地扫描完全不同的新视角。因此,作者想展示一项旨在测试在海上使用移动扫描可能性的实验结果。实验是在波罗的海南岸邻近的港口和相关环境中进行的。
摘要 研究了低植被对机载激光扫描的影响。高植被可通过过滤去除,但低植被会导致数字地形模型出现系统性误差。许多研究人员报告称测量值过高。对激光测距影响的研究提高了对所用技术的理解,并解释了观察到的误差。研究了使用植被类型信息校正数据的可能性,并使用来自地面测量的地面真实数据作为参考。提出了一种使用纹理测量的替代方法,该方法不需要有关土地覆盖类型的信息。纹理之前已为数字图像定义,这里介绍了其在点云中的等效纹理。
1 简介 1 1.1 相干激光雷达。。。。。。。。。。。。。。。。。。。。。。。....5 1.1.1 大气散射 ....................6 1.1.2 反向散射功率 .....................7 1.2 审查当前的 CLR ..................。。。。。8 1.2.1 眼睛安全。。。。。。。。。。。。。。。。。。。。。。。。。。。。。8 1.2.2 10 μm 系统。。。。。。。。。。。。。。。。。。。。。。。。。。。8 1.2.3 1 μm 系统。。。。。。。。。。。。。。。。。。。。。。。。。。。12 1.2.4 2μm系统。。。。。。。。。。。。。。。。。。。。。。。。。。。13 1.2.5 人眼安全波长带系统 .。。。。。。。。。。。。。。。17 1.2.6 其他波长.。。。。。。。。。。。。。。。。。。。。。。。21 1.2.7 结论.。。。。。。。。。。。。。。。。。。。。。。。。。。。。21 1.3 项目目标 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。23 1.4 论文概述.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24
柯达 Vision 彩色中间片 5242/2242;富士 ETERNA-RDI 8511/4511;EASTMAN 细粒度复制全色负片 5234/5366;分离材料 2238
