精神分裂症研究表明,该组中所有死亡原因中多达40%可以归因于自杀(Wildgust等,2010),而25-50%的精神分裂症患者试图在他们的一生中自杀(Bohaterewicz等人,2018年; Cassidy等,2018年)。因此,非常需要开发更准确和客观的方法来预测精神分裂症患者自杀的风险。功能磁共振成像(fMRI)是一种非侵入性,广泛使用的方法,允许一种方法来测量人脑的活性。静止状态(RS)反过来被认为是高度有效的,因为它捕获了大脑总活动的60-80%(Smitha等,2017)。此外,一些研究表明,它允许监测治疗结果以及评估精神疾病的生物标志物(Glover,2011; Moghimi等,2018)。Previous studies indicate gray matter volume reduction in dorsolateral prefrontal cortex (DLPFC), superior temporal gyrus, as well as insular cortex in patients after suicide attempt, compared to the ones without suicide attempt in the past ( Besteher et al., 2016 ; Zhang et al., 2020 ), whereas fMRI studies revealed that during a simple task based on cognitive control, suicide thoughts were associated随着PFC活性的降低和先前的自杀企图的病史导致前皮层的活性降低(Minzenberg等,2014; Potvin等,2018)。体积和功能任务的先前结果fMRI分析表明,默认模式网络(DMN),显着性网络(SN)和Sensorimotor Network(SMN)中包含的区域的潜在静止状态大脑活动变化。近年来,RSFMRI数据的机器学习应用程序越来越多,以进行预后评估并在各个组或条件之间进行差异(Pereira等,2009)。最近,采用了以fMRI为公正的生物标志物的ML分类器来识别从事自杀相关行为的人,包括自杀念头。例如,Just等。(2017)能够正确地识别17名自杀参与者中的15个,灵敏度为0.88,使用高斯幼稚的贝叶斯算法和fMRI数据的特定为0.94。在最近的工作中,Gosnell等人。(2019)使用了随机森林(RF)算法和RSFMRI功能连通性数据,来自精神病患者,使他们能够以81.3%的敏感性正确地对自杀行为进行了分类。据我们所知,先前的研究都没有集中于各种ML分类器,以区分基于RSFMRI数据的健康控制(HCS),自杀风险(SR)和非杀伤性风险(NSR)精神分裂症患者。 在当前的工作中,我们的目标是将ML方法与RSFMRI数据相结合,以便研究所选的分类器是否允许在具有和没有自杀风险的精神分裂症患者之间进行分歧。 最终,执行了五种算法,例如梯度提升(GB),最小绝对收缩和选择操作员(LASSO),Logistic回归(LR),RF和支持向量机(SVM),以提高诊断准确性的可靠性。 每个指标礼物据我们所知,先前的研究都没有集中于各种ML分类器,以区分基于RSFMRI数据的健康控制(HCS),自杀风险(SR)和非杀伤性风险(NSR)精神分裂症患者。在当前的工作中,我们的目标是将ML方法与RSFMRI数据相结合,以便研究所选的分类器是否允许在具有和没有自杀风险的精神分裂症患者之间进行分歧。最终,执行了五种算法,例如梯度提升(GB),最小绝对收缩和选择操作员(LASSO),Logistic回归(LR),RF和支持向量机(SVM),以提高诊断准确性的可靠性。每个指标礼物
摘要 本研究的目的是比较人工神经网络 (ANN) 与贝叶斯岭回归、贝叶斯套索、贝叶斯 A、贝叶斯 B 和贝叶斯 Cπ 在估计内洛尔牛肉嫩度的基因组育种值方面的预测性能。使用 Illumina Bovine HD Bead Chip(HD,来自 90 个样本的 777K)和 GeneSeek Genomic Profiler(GGP Indicus HD,来自 485 个样本的 77K)对动物进行基因分型。对每个芯片应用基因型的质量控制,包括去除位于非常染色体上的 SNP,其次要等位基因频率 <5%、与 HWE 的偏差(p < 10 –6)以及连锁不平衡 >0.8。使用 FImpute 程序进行基因型估算。基于谱系的分析表明,肉质嫩度具有中等遗传性(0.35),这表明可以通过直接选择来改善肉质嫩度。贝叶斯回归模型的预测准确度非常相似,加性效应和显性效应分别从 0.20(贝叶斯 A)到 0.22(贝叶斯 B)和 0.14(贝叶斯 Cπ)到 0.19(贝叶斯 A)不等。ANN 对遗传价值的基因组预测准确度最高(0.33)。尽管人们认识到深度神经网络可以提供更准确的预测,但在我们的研究中,具有一个隐藏层、105 个神经元和整流线性单元 (ReLU) 激活函数的 ANN 足以提高对肉质嫩度遗传价值的预测。这些结果表明,具有相对简单架构的 ANN 可以为 Nellore 牛肉质嫩度提供卓越的基因组预测。
认知能力的差异源于潜在神经结构的细微差异。从大脑网络中的差异中理解和预测认知中的个体变异性需要利用不同的神经影像模式捕获的独特差异。在这里,我们采用了一种多级机器学习方法,结合了人类连接组项目(n = 1050)的扩散,功能和结构性MRI数据,以提供各种认知能力的单一预测模型:全球认知功能,流畅的智力,结晶智力,脉冲,脉冲,脉冲,脉冲,空间方向性,言语上的记忆和持续性记忆和持续性记忆。对每个认知评分的样本外预测首先是使用单个神经成像方式上的稀疏性主体成分回归产生的。然后将这些个体预测汇总并提交给套索估计器,该估计量消除了跨通道的冗余可变性。相对于最佳的单一模态预示,这项堆叠的词典导致了准确性的显着提高(在解释的方差中约为1%至超过3%的提升),这是大多数测试的认知能力。进一步的分析发现,扩散和脑表面证券对预测能力的贡献最大。我们的发现建立了一个下限,以使用多种神经影像学测量来预测认知的个体差异,包括结构和功能,量化不同成像模态的相对预测能力,并揭示每种方式如何提供有关认知功能中个人差异的独特和表达信息。
最近的研究强调了色氨酸代谢在阿尔茨海默氏病(AD)的发病机理中的显着参与。然而,仍然缺乏对色氨酸代谢在AD背景下的确切作用的全面研究。这项研究采用生物信息学方法来识别和验证与AD相关的潜在色氨酸代谢相关基因(TRPMG)。通过加权基因共表达网络分析(WGCNA)测试和17种已知的色氨酸代谢途径的交点促进了TRPMG的发现。随后,使用基因集变异分析(GSVA)阐明了TRPMG的推定生物学功能和途径。此外,采用最低绝对收缩和选择算子(LASSO)方法来识别枢纽基因并评估5个TRPMG在区分AD时的诊断效率。还研究了轮毂TRPMG与临床特征之间的关系。最后,使用APP/PS1小鼠对五个TRPMG进行体内验证。我们确定了与AD相关的5个TRPMG,包括丙酰辅酶A羧化酶亚基β(PCCB),TEA结构域转录因子1(TEAD1),苯基丙烷基TRNA合成酶亚基β(FARSB),Neurofascin(NFASC)(NFASC)和EZRIN(EZRIN(EZRIN)。在这些基因中,PCCB,FARSB,NFASC和TEAD1与年龄相关。在APP/PS1小鼠的海马中,我们观察到FARSB,PCCB和NFASC mRNA表达的下调。此外,在APP/PS1小鼠的脑皮质和海马中,PCCB和NFASC蛋白表达也被下调。我们的研究为未来的研究铺平了道路,旨在揭示AD中色氨酸代谢失调及其治疗意义的复杂机制。
这项研究调查了20名与虐待相关的创伤后应激障碍(PTSD)和20名非虐待后的未经药物治疗的青年和20名非经历性的未经药物相关后的青年和20名非经济体暴露的健康对照(HC)参与者。我们在TF-CBT 5个月之前和之后收集了大脑解剖结构的MRI扫描或HC组相同的时间间隔。freeSurfer软件用于将脑图像分为95个皮层和皮层下体积,并通过Lasso变量选择将其提交为最佳缩放回归。基线时组差异的最终模型包括较大的右侧轨道额叶和左后扣带回皮层以及PTSD中相对于HC组的较小的右中间和右中间和右前骨皮层,r 2 = .67。在治疗前变化中的组差异模型包括右侧中间额叶的纵向变化,左侧三角形三角形,右内旋和PTSD相对于HC组的左心角和左CUNEUS Corticies,r 2 = .69。在PTSD组中,治疗前症状改善的改善是通过左后扣带回皮质的纵向减少模拟的,R 2 = .45,并通过较小的右地峡(肾上腺后)扣带和较大的左caudate和较大的左CAUDATE和较大的左caudate和较大的左caudate和r 2 = .77进行预测。总的来说,治疗与支持执行功能的大脑区域的纵向变化有关,而不是将PTSD与基线的HC参与者区分开来的。此外,结果证实了后/后脾后扣带的作用,这是PTSD症状改善的相关性和治疗结果的预测指标。
摘要 背景 目前的痴呆风险评分在持续识别不同年龄段和地理位置的高危人群方面效果有限。 目的 我们旨在开发和验证一种针对英国中年人口的新型痴呆风险评分,使用两个队列:英国生物银行和英国 Whitehall II 研究。 方法 我们将英国生物银行队列分为训练组(n=176 611,80%)和测试样本(n=44 151,20%),并使用 Whitehall II 队列(n=2934)进行外部验证。我们使用 Cox LASSO 回归从 28 个候选预测因子中选择最强的痴呆症预测因子,然后使用竞争风险回归开发风险评分。 结果 我们的风险评分称为英国生物银行痴呆风险评分 (UKBDRS),包括年龄、教育程度、父母痴呆史、物质匮乏、糖尿病史、中风、抑郁、高血压、高胆固醇、家庭居住情况和性别。该评分在英国生物银行测试样本(曲线下面积 (AUC) 0.8,95% CI 0.78 至 0.82)和 Whitehall 队列(AUC 0.77,95% CI 0.72 至 0.81)中具有很强的判别准确度。UKBDRS 的表现还明显优于其他三个广泛使用的痴呆风险评分,这三个评分最初是在澳大利亚(澳大利亚国立大学阿尔茨海默病风险指数)、芬兰(心血管风险因素、衰老和痴呆评分)和英国(痴呆风险评分)的队列中开发的。临床意义我们的风险评分是一种易于使用的工具,可以识别英国有痴呆症风险的个体。需要进一步研究来确定该评分在其他人群中的有效性。
摘要背景:乳腺癌是影响全球众多女性的普遍公共卫生问题,与棕榈酰化(一种翻译后蛋白质修饰)有关。尽管人们对棕榈酰化越来越关注,但其对乳腺癌预后的具体影响仍不清楚。这项工作旨在确定与乳腺癌棕榈酰化相关的预后因素,并评估其在预测化疗和免疫疗法反应方面的有效性。方法:我们利用“limma”包分析乳腺癌和正常组织之间棕榈酰化相关基因的差异表达。使用“WGCNA”包识别中心基因。使用最小绝对收缩和选择算子 (LASSO) Cox 回归分析,我们确定了与棕榈酰化相关的预后特征,并使用“regplot”包开发了预后列线图。使用免疫表型评分 (IPS) 和“pRophetic”包评估模型对化疗和免疫疗法反应的预测值。结果:我们鉴定出211个与棕榈酰化相关的差异表达基因,其中44个显示出预后潜力。随后,我们建立了一个包含11个棕榈酰化相关基因的预测模型。根据中位风险评分将患者分为高风险组和低风险组。研究结果显示,高风险组个体的生存率较低,而低风险组个体的免疫细胞滤过率增加,对化疗和免疫治疗的反应性改善。此外,我们还建立了BC-棕榈酰化工具网站。结论:本研究开发了第一个基于机器学习的棕榈酰化相关基因预测模型并创建了相应的网站,为临床医生提供了改善患者预后的宝贵工具。
造血毒性是嵌合抗原受体T细胞(CAR T)治疗后最常见的长期不良事件(AE)。然而,接受关键临床试验中的汽车治疗的患者受到限制性选择标准,这意味着罕见但致命的毒性被低估了。在这里,我们在2017年1月至2021年12月之间系统地分析了使用美国食品药物管理局不利事件报告系统(FAERS)的CAR T相关AE。不成比例分析; ROR的下限和IC 95%的置信区间(CI)(CI)(ROR 025和IC 025)的下限分别超过一个,零被认为是显着的。在105,087,611个报告中,鉴定了5,112辆与CAR T相关的血毒性报告。We found 23 signi fi cant over-reporting hematologic AE (ROR025 >1) compared to the full database, of which hemophagocytic lymphohistiocytosis (HLH; n=136 [2.7%], ROR 025 = 21.06), coagulopathy (n=128 [2.5%], ROR 025 = 10.43), bone marrow failure (n = 112 [2.2%],ROR 025 = 4.88),散布血管内凝结(DIC; n = 99 [1.9%],ROR 025 = 9.64)和B细胞aplasia(n = 98 [1.9%],ROR 025 = 118.16,所有IC 025> 025> 025> 0)是一定的。重要的是,HLH和DIC的死亡率分别为69.9%和59.6%。最后,使用LASSO回归分析鉴定出造血毒性相关的死亡率为41.43%,而与死亡相关的血液学AE进行了鉴定。这些发现可以帮助临床医生早期发现那些很少报告但致命的血液学AE的发现,从而降低了汽车T受体严重毒性的风险。
抽象背景当前的痴呆症风险评分在始终如一地识别不同年龄和地理位置的处于危险中的个体方面取得了有限的成功。目的我们旨在使用两个同龄人:英国生物库和英国Whitehall II研究,为中年英国人口开发和验证新型痴呆症风险评分。方法,我们将英国生物库队列分为训练(n = 176 611,80%)和测试样本(n = 44 151,20%),并使用了Whitehall II队列(n = 2934)进行外部验证。我们使用Cox Lasso回归来从28个候选预测因子中选择最强的入射痴呆预测指标,然后使用竞争风险回归进行风险评分。调查结果我们的风险评分称为英国生物银行痴呆症风险评分(UKBDRS),包括年龄,教育,痴呆症的父母历史,材料剥夺,糖尿病,中风,抑郁,高血压,高胆固醇,家庭占用和性别的病史。分数在英国生物库测试样本(曲线下(AUC)0.8,95%CI 0.78至0.82)和白厅队列(AUC 0.77,95%CI 0.72至0.81)中具有很强的歧视精度。UKBDR还大大优于最初在澳大利亚同伙(澳大利亚国立大学阿尔茨海默氏病风险指数),芬兰(心血管风险因素,衰老和痴呆症评分)和英国(Dementia风险评分)的其他三个广泛使用的痴呆症风险评分。临床意义我们的风险评分代表了一个易于使用的工具,可以识别英国有痴呆症风险的人。需要进一步的研究来确定其他人群中该分数的有效性。
儿童和青少年的焦虑和抑郁应受到特别关注,因为它们是一个公共卫生问题,会对发展和心理健康产生毁灭性和长期影响。从遗传易感性到环境压力源等多种因素都会影响患上这些疾病的风险。本研究旨在了解环境因素和基因组学如何影响三个群体中儿童和青少年的焦虑和抑郁:青少年大脑和认知发展研究(美国,9-10 岁;N=11,875)、外化障碍和成瘾脆弱性联盟(印度,6-17 岁;N=4,326)和 IMAGEN(欧洲,14 岁;N=1888)。我们进行了数据协调,并使用线性混合效应模型、递归特征消除回归和 LASSO 回归模型确定了环境对焦虑/抑郁的影响。随后,通过大型分析和荟萃分析对所有三个队列进行了考虑了重要环境因素的全基因组关联分析,然后进行了功能注释。结果表明,多种环境因素导致发育过程中焦虑和抑郁的风险,其中早期生活压力和学校支持指数对所有三个队列的影响最为显著且一致。在荟萃分析和大型分析中,chr11p15 中的 SNP rs79878474 成为与焦虑和抑郁相关的特别有希望的候选者,尽管未达到基因组显著性。对元分析和巨分析中最有希望的 SNP 映射的常见基因进行基因集分析,发现在 chr11p15 和 chr3q26 区域中,在钾通道和胰岛素分泌功能方面有显著富集,特别是 chr11p15 中分别由 KCNC1、KCNJ11 和 ABCCC8 基因编码的 Kv3、Kir-6.2、SUR 钾通道。组织富集分析显示小肠中显著富集,