韦斯科特创业园 (前身为火箭推进机构) 是越来越多推进器和推进服务公司的所在地。本文概述了其中一些公司的近期活动。Airborne Engineering Limited 报告了其 LOX/LCH4 测试设施的调试工作以及其 VTVL 火箭的进一步测试工作。Protolaunch 报告了使用各种推进剂在 20N-500N 范围内的推进器技术的一系列发展。URA Thrusters 一直在开发各种各样的在轨使用电力推进选项。最后,Race to Space 计划启动,为来自英国大学的学生提供动手推进培训。该计划得到了 Airborne Engineering 和 Protolaunch 的支持,他们为学生举办了热火发动机测试,而 European Astrotech 则协助进行冷流测试。
铝 6061-RAM2 是一种为增材制造 (AM) 工艺开发的高强度铝原料。这种合金利用了反应增材制造 (RAM) 技术。RAM 铝合金被开发为可焊接(因此可打印),同时强度性能等于或超过高强度锻造铝合金。NASA 和行业合作伙伴开发了激光粉末定向能量沉积 (LP-DED) 增材制造 Al6061-RAM2,用于航空航天应用。工作包括建立构建参数、表征合金、制造组件以及完成复杂内部通道冷却喷嘴的热火测试。这些工作是为了满足对使用高性能轻质材料的大型部件日益增长的需求。两个火箭发动机喷嘴是使用包括整体冷却通道的 LP-DED Al6061-RAM2 制造的。Al6061-RAM2 已完成工艺开发并确定了初始性能。本文概述了 LP-DED 工艺开发、材料特性和性能、组件制造、补充开发和热火测试。本文提供了使用液氧 (LOX)/液氢 (LH2) 和液氧/甲烷 (LCH4) 的着陆器级 31 kN (7,000 lb f ) 推力发动机的热火测试结果。
铝6061-RAM2是一种用于添加剂制造(AM)工艺开发的高强度铝原料。这种合金利用了反应性添加剂制造(RAM)技术。开发了RAM铝合金是可焊接的(因此可打印),而高强度锻造铝合金的强度特性则相等或超过强度。NASA和行业合作伙伴开发了激光粉末定向能量沉积(LP-DED)的AL6061-RAM2添加剂制造,以用于航空航天应用。的努力包括建立构建参数,表征合金,制造组件以及完成复杂的内部通道冷却喷嘴的热火测试。这些努力是针对使用高性能轻重量材料对大规模零件的日益增长的需求。使用LP-DED AL6061-RAM2制造了两个火箭发动机喷嘴,其中包括积分冷却通道。AL6061-RAM2已完成过程开发,并建立了初始属性。本文概述了LP-DED工艺开发,材料表征和性能,组件制造,补充开发和热火测试。使用液体氧(LOX)/液体氢(LH2)和Lox/甲烷(LCH4)提供了针对着陆级31 kN(7,000 lb F)推力发动机的热火测试结果。
火箭发动机的再生冷却结构承受着极大的载荷。载荷是由热燃烧气体(对于 CH4/OX 约为 3500 K)和冷冷却通道流(对于 LCH4 约为 100 K)相互作用引起的,这导致结构中出现大的温度梯度和高温(对于铜合金最高可达 1000 K 左右),同时两种流体之间的压差也很大。本研究旨在更好地了解三个主要组成部分的物理行为:结构、热气体和冷却剂流以及它们之间的相互作用,特别是结构的寿命。自 1970 年代以来,已经进行了一些燃烧室结构的寿命实验。Quentmeyer 研究了 GH LOX 2/ 燃烧室的 21 个圆柱形 LH 2 冷却测试段的低周热疲劳 [1]。在微型燃烧室内安装了一个水冷中心体,以减少燃料消耗并形成火箭发动机的燃烧、音速喉部和膨胀区域。研究了三种不同的材料。热电偶被放置在冷却通道肋条和冷却剂的入口和出口歧管中。测试是在 41.4 bar 的腔室压力和 6.0 的混合比(氧气与燃料之比)下进行的。喉部区域的热通量达到 54 MW/m 2 。循环重复测试,直到通过感测冷却剂通道泄漏检测到燃烧室故障。没有定量研究热气壁的变形。单个冷却剂质量
摘要:现代可重复使用发射器的发展,例如采用 LOX/LCH4 Prometheus 发动机的 Themis 项目、采用 LOX/LH2 RSR2 发动机的可重复使用 VTVL 发射器第一级演示器的 CALLISTO 以及采用 Merlin 1D 发动机的 SpaceX 猎鹰 9 号,都凸显了对先进控制算法的需求,以确保发动机的可靠运行。这些发动机的多次重启能力对节流阀提出了额外的要求,需要扩展控制器有效性域,以便在各种操作状态下安全地实现低推力水平。这种能力也增加了部件故障的风险,尤其是当发动机参数随着任务概况而变化时。为了解决这个问题,我们的研究使用多物理系统级建模和仿真,特别关注涡轮泵部件,评估了可重复使用火箭发动机 (RRE) 及其子部件在不同故障模式下的动态可靠性。使用 EcosimPro-ESPSS 软件(版本 6.4.34)进行的瞬态条件建模和性能分析表明,涡轮泵组件在标称条件下保持高可靠性,涡轮叶片即使在变化的热负荷和机械负荷下也表现出显著的疲劳寿命。此外,提出的预测模型估计了关键部件的剩余使用寿命,为提高可重复使用火箭发动机中涡轮泵的寿命和可靠性提供了宝贵的见解。本研究采用确定性、热相关结构模拟,关键控制目标包括燃烧室压力和混合比的最终状态跟踪以及操作约束的验证,以 LUMEN 演示发动机和 LE-5B-2 发动机为例。
火箭发动机的再生冷却结构承受着极大的负荷。负荷是由热燃烧气体(CH4/OX 约为 3500 K)和冷冷却通道流(LCH4 约为 100 K)相互作用引起的,这导致结构中存在较大的温度梯度和高温(铜合金最高可达 1000 K 左右),同时两种流体之间存在较高的压力差。本研究旨在更好地了解三个主要组成部分的物理行为:结构、热气体和冷却剂流,以及它们的相互作用,特别是结构的寿命。自 20 世纪 70 年代以来,已经对燃烧室结构进行了一些寿命实验。Quentmeyer 研究了 GH LOX 2/ 燃烧室 [1] 的 21 个圆柱形 LH 2 冷却测试段的低周热疲劳。在小尺寸燃烧室内安装了一个水冷中心体,以减少燃料消耗并形成火箭发动机的燃烧、音速喉部和膨胀区域。研究了三种不同的材料。热电偶被放置在冷却通道肋条和冷却剂的入口和出口歧管中。测试是在 41.4 bar 的室内压力和 6.0 的混合比(氧气与燃料之比)下进行的。喉部区域的热通量达到 54 MW/m 2 。循环重复测试,直到通过感测冷却剂通道泄漏检测到燃烧室故障。没有定量研究热气壁的变形。单个冷却剂质量均未
