在欧洲乃至全球,化石资源的循环利用问题都十分严重。投资者的偏好也随之而来:对于未能采取严肃的可持续发展措施和实现下游循环性的公司,获得资本的成本将越来越高。有关循环经济驱动因素的概述,请参见图 1。商业案例也在这里。虽然与化石材料相比,规模对于二次原材料来说始终是一个挑战,但已经存在像聚对苯二甲酸乙二醇酯 (PET) 这样的化学废物流,具有明显的盈亏平衡经济效益。对于其他几种塑料废物流,例如聚苯乙烯 (PS)、低密度聚乙烯 (LDPE) 和聚丙烯 (PP),根据二次原材料的市场价格与其原始替代品的比较,似乎也具有良好的潜力。下游的循环性实现具有进一步可观的产量和价值潜力。欧盟 2018 年消耗了约 5120 万吨塑料,但只有 2910 万吨
摘要 - 除了改变人类的生活质量外,塑料废物的积累是影响陆地和海洋生态系统的问题。这项研究的目的是通过系统的综述和荟萃分析评估塑料使用不同种类的细菌的生物降解。该研究具有定量方法,应用类型,文献综述和描述性解释水平的非实验性设计。从Scopus和Web of Science数据库收集了502项研究,从2012年1月至2021年9月。结果表明伪鼠sp。细菌生物降解的低密度聚乙烯(LDPE)的生物降解为1.8%,而假莫纳AK31将聚苯乙烯(PS)的质量降低了19.9%。关于殖民地的生长,一个细菌联盟的生长为1.9e+06 cfu/ml,在聚氨酯薄膜上,副细菌paralicheniformis的生长为6e+5 cfu/ml 30天。最后,得出结论,细菌菌株可以降解塑料,并且为了评估,有必要了解其细菌群体和聚合物的质量减少。
Bharat Biotech International Ltd.,印度什么是Rotavac5D®,Rotavirus疫苗(现场,口服)? rotavac5D®,轮状病毒疫苗(活口腔)是一种单价疫苗,含有悬浮在Vero细胞中传播的死亡型轮状病毒菌株116E的悬浮液。 轮状病毒在病毒表面上的两个蛋白质中分为双重分类系统中,分为G和P类型。 基于此命名法,轮状病毒116E被归类为G9P [11]。 Rotavac5D®的单一人剂量为0.5 ml,含有不小于[NLT] 10 5.0 FFU [焦点形成单位]活旋转病毒116E。 该疫苗可作为一小瓶无菌液体用于口服。 Rotavac5D®,轮状病毒疫苗(Live,口服)在USP型L玻璃小瓶中呈现,并提供两个演示:单剂量(0.5 mL)和多剂量(2.5 mL)。 半透明的伽玛辐照粉红色的低密度聚乙烯(LDPE)模压滴管,带有帽子,并在塑料袋中挤满了疫苗小瓶。 该疫苗由pH范围:6.50至7.50的每0.5 mL(5滴)的以下组成组成。Bharat Biotech International Ltd.,印度什么是Rotavac5D®,Rotavirus疫苗(现场,口服)?rotavac5D®,轮状病毒疫苗(活口腔)是一种单价疫苗,含有悬浮在Vero细胞中传播的死亡型轮状病毒菌株116E的悬浮液。轮状病毒在病毒表面上的两个蛋白质中分为双重分类系统中,分为G和P类型。基于此命名法,轮状病毒116E被归类为G9P [11]。Rotavac5D®的单一人剂量为0.5 ml,含有不小于[NLT] 10 5.0 FFU [焦点形成单位]活旋转病毒116E。该疫苗可作为一小瓶无菌液体用于口服。Rotavac5D®,轮状病毒疫苗(Live,口服)在USP型L玻璃小瓶中呈现,并提供两个演示:单剂量(0.5 mL)和多剂量(2.5 mL)。半透明的伽玛辐照粉红色的低密度聚乙烯(LDPE)模压滴管,带有帽子,并在塑料袋中挤满了疫苗小瓶。该疫苗由pH范围:6.50至7.50的每0.5 mL(5滴)的以下组成组成。
这项研究旨在开发一种基于形态学的模型,以预测聚合物与相分离结构的聚合物混合物的模量和拉伸强度。分析模型采用了打结和互连的骨骼结构(KISS)模型的几何方法,结合了不混合聚合物混合物的形态变化和组件的渗透阈值。通过假设各个形态态的特定厚度的薄界面层,可以解释聚合物/聚合物界面对机械性能的影响。使用IPP/PA,PP/PET和LDPE/PP聚合物混合物的实验数据评估了所提出的模型的预测能力,这些数据来自现有文献。结果在预测数据和观察到的数据之间建立了合理的规定。该模型的预测也与已建立的抗拉强度和杨氏混合物混合物模量的模型的预测进行了比较,这表明了其有效性。将界面区域纳入机械性能的建模过程中代表了所提出的模型的关键区别特征,从而增强了其与聚合物混合物的实际微结构的兼容性。此外,该模型对相对简单的数学计算的依赖提出了另一个关键优势。
海洋的塑料污染是最大的环境问题。可生物降解的塑料在打击塑料污染的积累中具有潜在的“溶解性”,其产量目前正在增加。尽管这些聚合物将有助于未来的塑料海洋碎片预算,但关于在不同自然环境中可生物降解塑料的行为知之甚少。在这项研究中,我们在实验室上对整个微生物群落进行了分子,确认可生物降解的聚丁乙烯甲酸甲酸酯 - 甲甲酸盐(PBSET)和多羟基丁酸(PHB)(PHB)膜(PHB)膜,以及非生物降落的常规沿环境层次的层次,这些层次是层次的层次,这些层次是均不同的,这些层次是差异的。 海。在22个月的孵育期间,在五个时间点中取出了骨,底栖和效等栖息地的样品。我们评估了潜在的生物降解细菌和真菌类群的存在,并将它们与这些聚合物的原位瓦解数据进行了对比。扫描电子显微镜成像构成了我们的分子数据。假定的塑料降解器发生在所有环境中,但没有明显的
Date: 14 December 2023 ( 1 ) Version 1.0 Products: the Mitsubishi Chemical Advanced Materials stock shapes mentioned below: PE 500 natural and colors (black, blue, green, red, and yellow) Proteus ® Copolymer PP Proteus ® HDPE natural, black, FDA black natural, black, and eurogrey Proteus ® Homopolymer PP Proteus ® Lay Flat PP natural, grey, white plus, black proteus®LDPEProteus®O和PPPPPESanalite®HDPE天然和黑色Sanalite®均聚物PP天然和黑色符合我们的最佳知识,我们在此之后确认,上述三菱化学高级材料的库存形状不是Nano量表2的物质。Proteus®和Sultron®是三菱化学高级材料组的注册商标。所有声明,技术信息,建议和建议仅用于信息目的,不打算,不应将其解释为任何类型或销售期限的保修。读者被告知,三菱化学高级材料不能保证此信息的准确性或完整性,并且客户有责任测试和评估在任何给定应用中或用于完成设备中使用的三菱化学高级材料产品的适用性。
无效的回收和环境污染使全球塑料废物危机恶化,需要探索替代性处理方法。本文研究了黄色粉虫,Tenebrio molitor和Superworts,Zophabas Atratus的生物降解能力,重点是消耗扩展的聚苯乙烯(EPS),低密度聚乙烯(LDPE)和可生物降解的塑料。塑料废物,主要由多乙烯和聚苯乙烯(聚苯乙烯)等不可溶剂塑料组成,这引起了由于缓慢降解而引起的挑战。这项研究揭示了幼虫对EPS的偏爱,强调了特定于物种考虑在塑料废物管理中的重要性。对EPS的偏爱至关重要,因为与其他类型的塑料相比,它更笨重,更难处置。实验设置监测了幼体消耗,重量测量和FRASS产生表明偏好。傅立叶变换红外光谱证实了菌丝中生物降解的迹象,证明了幼虫消化对塑料结构的变革性影响。尽管有宝贵的见解,但诸如维持幼虫营养和理解环境因素对降解效率的影响等挑战需要进一步探索。利用昆虫幼虫进行塑料废物管理有望进行可持续缓解,但持续的研究对于实际实施至关重要。
日期:2023 年 9 月 8 日 (1) 版本 2.1 产品:下述三菱化学先进材料半成品: PE 500 自然色和彩色(黑色、蓝色、绿色、红色、黄色) Proteus ® HDPE 自然色和黑色 Proteus ® HDPE White Plus Proteus ® H PP 自然色 Proteus ® LDPE Proteus ® O&P PP 自然色 Sanalite ® HDPE 自然色和黑色 Sanalite ® PP 据我们所知,我们确认,2008 年 10 月 28 日发布并于 2023 年 6 月 14 日由 ECHA 修订的“高度关注物质候选清单”中提到的物质,在制造上述三菱化学先进材料半成品的过程中,无论是在原材料合成过程中还是在进一步加工过程中,都不会有意引入 2,或其浓度不超过ECHA 提到的质量限值为 0.1%。由于预计不会存在上述有害物质,三菱化学先进材料公司没有通过测试系统地检查其半成品中是否不含上述有害物质。 Proteus® 和 Sanalite® 是三菱化学先进材料集团的注册商标。
该论文报告了废物塑料的热和催化热解的产生,包括聚丙烯(PP),高密度聚乙烯(HDPE),低密度聚乙烯(LDPE)和聚苯乙烯(PS)。为此,在催化热解中使用了三种不同类型的沸石(4A,ZSM-5和13x)和Cu/4a,Cu/ZSM-5和Cu/13x。催化剂的酸度和质地特性是聚合物分解的主要参数。催化剂的酸度顺序如下:Cu/13x> Cu/4a> Cu/ZSM-5。热热解的主要产物是液体,主要是线性重烃,而铜/沸石催化剂的催化热解产生的液态产物在较低的温度下含有更多的支撑碳氢化合物。通过使用FTIR和GC/MS技术进行了分析的液体产品。结果表明液态产物中存在石蜡,烯烃和芳族烃。还发现,在Cu/13x(较高的酸度,较大的孔径和高表面积)上生产了轻型液态烃和气态产物。对于Cu/4a,Cu/13x和Cu/ZSM-5催化剂,催化热解的主要液体产物分别在柴油,汽油和煤油范围内。
AEH 每小时空气交换量 AFCEE 空军工程与环境中心 API 美国石油协会 ARAR 适用或相关且适当的要求 ASTM 美国材料与试验协会 BKG IA 背景室内空气 BKG OA 背景室外空气 BRAC 基地重新调整和关闭 Cal-EPA 加州环境保护局 CDPHE 科罗拉多州公共卫生与环境部 CERCLA 综合环境反应、补偿与责任法 COC 关注的化学品 CSM 概念场地模型 CTE 集中趋势暴露 DDE 二氯二苯乙烯 DNAPL 致密非水相液体 DERP 国防环境恢复计划 DoD 国防部 DON 海军部 DQO 数据质量目标 DTSC 加州有毒物质控制部 ECOS 美国州环境委员会 EPA 美国环境保护局 EPC 暴露点浓度 FID 火焰离子化检测器 FUDS 以前使用的国防场地 GC 气相色谱法 GC/MS 气相色谱/质谱法 HI 危险指数 HQ 危险商IA 室内空气 IR 红外光谱 IRIS 综合风险信息系统 ITRC 州际技术与监管委员会 J&E Johnson and Ettinger LDPE 低密度聚乙烯