抽象教育是改变知识的一种方式,以便人类能够发展潜力。教育鼓励每个人发展并适应不断变化的时代,例如技术领域的进步。学生的学习成绩是成功管理学习计划的关键指标。学术绩效检测可以帮助研究计划经理监视并对有可能遇到困难的学生采取积极行动。机器学习可以是通过帮助分类和检测学生学术能力来克服这一挑战的解决方案。机器学习技术已被证明非常有效地分析复杂的数据并揭示了人们难以检测的隐藏模式。本研究旨在探索在检测学生学业表现的机器学习算法的实施,尤其是在NIAS大学数学教育研究计划中。随着技术进步,机器学习已被证明在分类数据和检测传统方法无法识别的隐藏模式方面有效。本研究使用支持向量机(SVM)算法根据从学生主要数据中收集的数据集来预测学生的学习成绩。数据集包括各种因素,例如GPA值,出勤,参与和学习资源的使用。在要使用的方法中,将使用调查表收集数据,其中有许多受访者多达193人。已收集的数据将使用SVM处理,以在预测学生的学习成绩中获得结果。分析结果表明,使用的SVM模型的精度为77.59%,在学业表现良好的学生班级中的偏见更加倾向。这项研究的结果有望在开发更有效的学习方法和对三级机构的学术干预的个性化方面做出实际贡献。关键字:机器学习,学业表现和支持向量机
图3说明了Yolov5分类结果的实现。网络摄像头将捕获鱼类对象的实时图像,并且网络摄像头记录的输出将在Python程序中处理,其中已将ONNX文件作为学习模型合并。随后,系统将在显示器上显示鱼的图像,并配以相机捕获的鱼类。该系统成功地在监视器上成功显示了被检测到的鱼的实时图像,并伴有其各自的物种。此外,我们优化了该模型以提高速度和准确性,评估了性能指标,例如响应时间和准确率。实时鱼类分类系统展示了在渔业监测,环境研究和水产养殖行业中的潜在应用,为准确性和技术整合的持续进步铺平了道路。
●计算机视觉和机器学习应用在Heliophysics中的应用,包括:太阳能磁性太阳能活动(耀斑,CMES,颗粒)太阳能风太空空间天气和空间气候气候地机无线电循环无线电射击
学费 40000 40000 45000 65000 40000 45000 65000 40000 45000 65000 40000 45000 65000 40000 45000 技能型增值培训费 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 毕业典礼费 2000 学期费 70000 45000 50000 70000 45000 50000 70000 45000 50000 70000 45000 52000 年费
为人工智能中学习的基本学习类型提供全面的理解,并在监督和无监督的学习之间划定。本章旨在向读者介绍这些学习范式的核心概念和方法,包括分类概述,并解释不同数据集的重要性,例如培训,测试和验证在AI模型的开发中。此外,本章将解决模型培训中的共同挑战,尤其是过度拟合和不足,并讨论减轻这些问题的策略。目标是为读者提供有效应用这些概念在AI的各种应用中的知识。
机器学习的快速增长已大大改变了各种行业,包括健康,金融和自治系统。了解这个动态领域的趋势对于指导研究,分配资源和预期未来的发展至关重要。本研究通过研究科学文章的标题和摘要来解决2014年至2024年机器学习研究中进行全面趋势分析的必要性。通过提取描述性限定词,我们将文章分类为特定的主题,并随着时间的推移分析了它们的演变。我们的方法包括对预选赛的详细研究,对这些资格符与关联规则的共同存在的研究,文章的主题分类以及每个主题的趋势预测。关键发现突出了“人工神经网络和深度学习”等主题的持续突出以及“生成模型”等新领域的出现。分析显示研究重点的重大转变,并确定了一致的趋势,为该领域的发展提供了宝贵的见解。这项研究证明了文本挖掘技术在跟踪和预测研究趋势中的有效性。
地球科学中标记的培训数据的可用性反映在监督分析中使用的训练数据数量中。除了上述10年的分析外,我们还从2018 - 2019年的AGU论文中手动提取了其他相关信息,包括应用的ML算法,标记的培训数据的数量和数据类型(模型输出,卫星,原位,原位,重新分析等)。在我们调查的论文中,大多数ML算法是使用数百个标记样品培训的。但是,对于使用模型输出或大型,已建立的数据集的某些应用程序,培训数据的数量范围更大。缺乏训练数据在生物学科学和陆地水圈(水文)研究中尤其急切。
*我们的课程是基于故事的。这意味着每个课程都将开发儿童对故事的理解。可以调整其中的一些课程,以包括与孩子们更多的写作和阅读,但这不是我们会议的主要目的。