不锈钢钝化对很多人来说是一个神秘的过程,但在海洋工业中却非常重要,可以确保充分发挥耐腐蚀钢合金的优势。它是恢复不锈钢罐表面活力、最大限度提高灵活性和装载机会的重要工具。本文讨论了不锈钢在油轮建造中的应用。解释了钝化的原理和过程。将传统的硝酸基钝化方法与最近的柠檬酸基方法进行了比较,包括在安全性、处置问题、易用性和由此产生的防腐保护等方面的差异。重点关注在高腐蚀性暴露(如海洋环境)中所涉及的挑战、保持良好的表面以及发生腐蚀后的恢复。本文讨论了不锈钢钝化的钝化测试方法和行业规范和标准。
缩写和首字母缩略词...................................................................................................... xiii 1.0 介绍................................................................................................................................... 1-1 1.1 海上发射系统概述............................................................................................................... 1-1 1.2 海上发射组织...................................................................................................................... 1-5 2.0 运载工具描述...................................................................................................................... 2-1 2.1 天顶星第一级...................................................................................................................... 2-3 2.2 天顶星第二级...................................................................................................................... 2-7 2.3 Block DM-SL—上级...................................................................................................... 2-8 2.4 有效载荷单元...................................................................................................................... 2-9 3.0 性能...................................................................................................................................... 3-1 3.1 发射场............................................................................................................................. 3-2 3.2 上升轨迹...................................................................................................................... 3-3 3.3
摘要:二尖瓣反流是一种常见的心脏瓣膜疾病,与高发病率和死亡率相关。使用 MitraClip 装置进行经导管二尖瓣修复已成为不适合常规手术的患者的一种安全有效的替代方法。然而,MitraClip 植入左心室的结构和血流动力学影响尚未得到广泛探索。本研究旨在使用高精度人体心脏模型评估 MitraClip 装置的结构和血流动力学性能,特别关注健康的二尖瓣几何形状。使用有限元法进行结构分析和使用格子波尔兹曼法进行计算流分析,模拟了 MitraClip 装置的植入。MitraClip 植入会引起二尖瓣的几何变化,导致受该装置约束的瓣叶区域主应力的局部最大值。血流动力学评估显示左心室壁附近有缓慢移动的嵌套螺旋流,心尖区域有高流速。涡流分析表明,在植入 MitraClip 后,二尖瓣的双孔面积配置会引起异常血流动力学状况。通过以患者特定的方式预测可能的不良事件和并发症,计算建模支持循证决策,并提高经导管二尖瓣修复的整体有效性和安全性。
1东田纳西州立大学詹姆斯·H·奎伦医学院,美国田纳西州约翰逊市2 Ballad Health CVA心脏研究所,田纳西州约翰逊市,美国田纳西州约翰逊市,通讯作者:Ashwin Jagadish,东田纳西州立大学詹姆斯·H·Quillen医学院医学生James H. Quillen医学院修订:12/12/2023接受:12/21/2023发布:12/31/2023 AM J Hosp Med Oct; 7(4):2023。doi:https://doi.org/10.24150/ajhm/2024.004关键词:动脉瘤,血栓,超声心动图,抗凝性,抗癌性心理性心理性心理中性疗法抽象中性障碍左心室(LV)超常见的形式不常见的形式(HC)。它与顶端动脉瘤,心律不齐和心脏猝死有关。顶端动脉瘤可以导致血栓发展,并且患有这种情况的个体可能需要抗凝。我们的病例涉及一名具有HCM的76岁女性,这些女性患有障碍物和LV顶端动脉瘤形成中腔中液脂肥大。她在动脉瘤中形成了一个血栓,该血栓已成功地用口服apixaban处理。引言虽然肥厚性心肌病可以在左心室(LV)壁中的任何地方都表现出来,但最常见的表现涉及基底前隔膜或前自由壁的肥大[1]。一种罕见类型的肥厚性心肌病(HCM)可以作为中腔LV阻塞[2]。中腔lv阻塞
人类大脑的特点是其左右轴 1 存在各种人群水平的不对称,包括左半球相对于右半球向后和向腹侧延伸的整体“扭矩”,额枕叶皮质厚度梯度的左右差异 2 ,以及大脑侧裂周围半球的形态差异 3 。许多大脑功能也是侧化的,包括手部运动控制和语言,大约 85% 的人表现出左半球占主导地位 4 – 13 。据报道,各种认知和精神障碍都出现了大脑或行为不对称的改变 7、14 – 17 ,这表明人群典型的不对称与人类大脑的最佳功能有关。大脑的行为和解剖不对称在子宫内就已明显 1,18-20 ,这表明大脑左右轴形成的早期遗传发育程序 21,22 。内脏器官发育(心脏、胃、肝脏等)的研究表明,群体水平不对称的产生需要早期胚胎中至少三个重要步骤 23,24 :(1)打破双侧对称性,创建相对于前后轴和背腹轴具有一致方向的左右轴,(2)在早期胚胎结构的左侧和右侧触发不同的基因表达模式,(3)不对称基因表达转化为侧化形态和器官位置。原则上,建立胚胎的左右轴需要某种程度的手性,即关键的生物分子或细胞结构只以两种可能的镜像形式存在。地球上的生命以 L 型氨基酸而非镜像 D 型氨基酸为基础,这种手性延续到初级纤毛 25,26 的宏观结构和运动中,这有助于在胚胎中形成内脏器官的左右轴 25。然而,当内脏器官因突变而发生内脏内位逆位(即内脏器官在左右轴上的位置颠倒)时,语言和手部运动控制的半球优势通常不会逆转
心力衰竭(HF)心血管死亡和治疗策略的风险层次,阀门置换的最佳时机以及用于植入植入性心脏验证符号的患者选择的患者是基于大多数指南的左心室避孕分数(LVEF)的超声心动图计算。作为收缩功能的标志物,LVEF具有由加载条件和空腔几何形状以及图像质量影响的重要局限性,从而影响了观察者间和观察者内的测量变异性。lvef是缩短心肌膜的三个组成部分的产物:纵向,圆周和倾斜。因此,它是基于空腔体积变化的全球弹出性能的标记,而不是直接反映心肌收缩功能,因此即使肌纤维的收缩功能受损,也可能是正常的。亚心脏的纵向纤维是对缺血的最敏感层,因此,当功能失调时,圆周纤维可能会补偿并保持整体LVEF。同样,在HF患者中,LVEF用于分层亚组,这种方法具有预后的含义,但没有直接关系。HF是一种动态疾病,根据潜在的病理可能会随着时间的流逝而恶化或改善。这种动态性会影响LVEF及其用于指导治疗的使用。介入后LVEF的更改也是如此。在这篇综述中,我们分析了LVEF在广泛的心血管病理中的临床,病理生理和技术局限性。
拟议土地分类(2023 年) 英亩 净差额 项目运营 193 项目运营(PO) 238 45 休闲 - 密集使用 1,505 高密度休闲(HDR) 866(639) 环境敏感区域(ESA) 576 576 休闲 - 低密度 937 多资源管理 - 低密度休闲(LDR) 1,269 332
LVEF 有局限性。4 随着对 HF 综合征复杂性的认识不断提高,以及表征 HF 的临床、生物标志物、影像学、侵入性血流动力学和综合评分以及大数据分析工具的改进,LVEF 越来越被认为过于原始。但 LVEF 的批评者在任何情况下都没有提供 LVEF 的有效替代方案。数十年来 HF 治疗的进展仍然基于以 LVEF 降低为主要纳入标准的研究。因此,从这个角度来看,正如其他人最近所做的那样,7 我们提供了一个务实的理由,说明为什么使用超声心动图测量 LVEF 并将 HF 归类为射血分数降低的 HF(HFrEF,LVEF ≤ 40%);射血分数轻度降低的 HF(HFmrEF,LVEF 4 1 –49%)和射血分数保留的 HF(HFpEF,LVEF ≥ 50%)2 仍然是评估疑似或明显 HF 患者的主要临床工具,直到出现更好的可操作的替代方案(图 1)。
肺动脉。第2阶段是部分Cavo-Pulonary旁路,其中上腔静脉(SVC)在4-6个月大时与肺动脉相连。在第3阶段,下腔静脉(IVC)与18个月至4岁的肺动脉相连,从而产生Fontan循环(3,4)。尽管这些程序的出现根本使生存成为可能,但这些患者的长期预后仍然很差。一项针对1998年至2012年之间的244例HLHS患者的一项研究估计,有63.5%的患者存活到1岁,58.6%至5年,54.6%至10岁,而32.6%至15岁(3)。在某些情况下,患者无法忍受抑制过程的一个阶段,并将其恢复回到先前的阶段并列为心脏移植(5)。已经观察到,需要心脏移植的HLHS患者的结果很差,其中一项研究观察到这些患者中有53%在10年的时间点幸存下来(5)。获得完整的方坦循环的患者通常会出现并发症,包括蛋白质失去肠病,心律不齐和肺动脉高压(6)。因此,需要改善HLHS手术抑制程序所赋予的益处。已经假设,使用基于干细胞的再生技术可以帮助加强和重塑欠发达的心脏。这种方法的原理是引入的多能细胞可以通过旁分泌信号传导诱导受损/发育不良组织的自我再生能力,而不是整合在组织本身中(7,8)。应该注意的是,成人心脏组织的再生能力存在一些争议,以便最初的研究表明,骨髓衍生的多能细胞可以整合到心脏组织中,并提出了驱动驱动的问题(9)。尽管如此,仍有临床前和临床数据表明,小儿心脏组织通过未知机制保持了一些再生能力,因此在这些情况下可能是基于干细胞的方法可以探讨的(10)。在这里,我们将回顾各种临床试验,这些试验测试了可以诱导Pe Diatric心脏组织再生的假设,这些试验的局限性,以及对临床前环境中正在开发的新方法的简要概述。
目的:左心室辅助装置 (LVAD) 在晚期心力衰竭管理中至关重要,但驱动系统感染仍然是一个严重的并发症。本研究旨在评估糖尿病和非糖尿病 LVAD 患者驱动系统感染的微生物特征和临床结果。方法:我们对 2020 年 1 月至 2024 年 12 月期间 40 名患有驱动系统感染的 LVAD 患者进行了回顾性分析。微生物被分为革兰氏阳性菌、革兰氏阴性菌或真菌,并比较了糖尿病组和非糖尿病组之间的患病率。分析了临床结果,包括复发、菌血症和死亡率。结果:革兰氏阳性菌是糖尿病组 (53.2%) 和非糖尿病组 (63.6%) 中最常见的分离微生物,无统计学差异 (p=0.285)。非糖尿病患者分离出金黄色葡萄球菌的频率更高(25% vs. 12.9%,p=0.110)。革兰氏阴性细菌和真菌病原体分别在 35.8% 和 6.6% 的病例中被鉴定出来,各组之间的分布相似。死亡率主要受年龄影响(AOR:0.879,95% CI:0.789-0.979,p=0.019),而其他人口统计学和临床因素没有显示出显着相关性。结论:糖尿病和非糖尿病 LVAD 患者的传动系统感染的微生物学特征是可比的,病原体流行率差异很小。年龄是死亡率的重要独立风险因素,而糖尿病不会导致临床结果的差异。需要进行更大规模的前瞻性研究来验证这些发现并优化感染管理策略。关键词:糖尿病、传动系统感染、心力衰竭、左心室辅助装置